Refined tooth and pulp segmentation using U-Net in CBCT image

被引:53
|
作者
Duan, Wei [1 ]
Chen, Yufei [1 ]
Zhang, Qi [2 ]
Lin, Xiang [2 ]
Yang, Xiaoyu [1 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[2] Tongji Univ, Dept Endodont, Shanghai Engn Res Ctr Tooth Restorat & Regenerat, Sch & Hosp Stomatol, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer-Assisted image processing; Tooth and pulp cavity segmentation; U-Net model; Cone-Beam Computed Tomography; TEETH; CLASSIFICATION;
D O I
10.1259/dmfr.20200251
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives: The aim of this study was extracting any single tooth from a CBCT scan and performing tooth and pulp cavity segmentation to visualize and to have knowledge of internal anatomy relationships before undertaking endodontic therapy. Methods: We propose a two-phase deep learning solution for accurate tooth and pulp cavity segmentation. First, the single tooth bounding box is extracted automatically for both single-rooted tooth (ST) and multirooted tooth (MT). It is achieved by using the Region Proposal Network (RPN) with Feature Pyramid Network (FPN) method from the perspective of panorama. Second, U-Net model is iteratively performed for refined tooth and pulp segmentation against two types of tooth ST and MT, respectively. In light of rough data and annotation problems for dental pulp, we design a loss function with a smoothness penalty in the network. Furthermore, the multi-view data enhancement is proposed to solve the small data challenge and morphology structural problems. Results: The experimental results show that the proposed method can obtain an average dice 95.7% for ST, 96.2% for MT and 88.6% for pulp of ST, 87.6% for pulp of MT. Conclusions: This study proposed a two-phase deep learning solution for fast and accurately extracting any single tooth from a CBCT scan and performing accurate tooth and pulp cavity segmentation. The 3D reconstruction results can completely show the morphology of teeth and pulps, it also provides valuable data for further research and clinical practice.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A Modified U-Net for Brain MR Image Segmentation
    Chen, Yunjie
    Cao, Zhihui
    Cao, Chunzheng
    Yang, Jianwei
    Zhang, Jianwei
    CLOUD COMPUTING AND SECURITY, PT VI, 2018, 11068 : 233 - 242
  • [22] Modified U-Net for cytological medical image segmentation
    Benazzouz, Mourtada
    Benomar, Mohammed Lamine
    Moualek, Youcef
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1761 - 1773
  • [23] MIXED TRANSFORMER U-NET FOR MEDICAL IMAGE SEGMENTATION
    Wang, Hongyi
    Xie, Shiao
    Lin, Lanfen
    Iwamoto, Yutaro
    Han, Xian-Hua
    Chen, Yen-Wei
    Tong, Ruofeng
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2390 - 2394
  • [24] Implicit U-Net for Volumetric Medical Image Segmentation
    Marimont, Sergio Naval
    Tarroni, Giacomo
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 387 - 397
  • [25] Boundary Aware U-Net for Medical Image Segmentation
    Alahmadi, Mohammad D.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 9929 - 9940
  • [26] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [27] Segmentation of skin lesions image based on U-Net + +
    Chen Zhao
    Renjun Shuai
    Li Ma
    Wenjia Liu
    Menglin Wu
    Multimedia Tools and Applications, 2022, 81 : 8691 - 8717
  • [28] Medical Image Segmentation Review: The Success of U-Net
    Azad, Reza
    Aghdam, Ehsan Khodapanah
    Rauland, Amelie
    Jia, Yiwei
    Avval, Atlas Haddadi
    Bozorgpour, Afshin
    Karimijafarbigloo, Sanaz
    Cohen, Joseph Paul
    Adeli, Ehsan
    Merhof, Dorit
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10076 - 10095
  • [29] Cardiac Image Segmentation Based on Improved U-Net
    Qiao, Guang Xiao
    Song, Ji Hong
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 133 - 137
  • [30] Diffusion Transformer U-Net for Medical Image Segmentation
    Chowdary, G. Jignesh
    Yin, Zhaozheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 622 - 631