On chiral polytopes having a group PSL(3,q)$\mathrm{PSL}(3,q)$ as automorphism group

被引:0
|
作者
Leemans, Dimitri [1 ]
Vandenschrick, Adrien [1 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 216,Blvd Triomphe, B-1050 Brussels, Belgium
关键词
INVOLUTIONS;
D O I
10.1112/jlms.12569
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each prime power q > 5$q\geqslant 5$, we construct a rank four chiral polytope that has a group PSL(3,q)$\mathrm{PSL}(3,q)$ as automorphism group and Schlafli type [q-1,2(q-1)(3,q-1),q-1]$[q-1,\frac{2(q-1)}{(3,q-1)},q-1]$. We also construct rank five polytopes for some values of q$q$ and we show that there is no chiral polytope of rank at least six having a group PSL(3,q)$\mathrm{PSL}(3,q)$ or PSU(3,q)$\mathrm{PSU}(3,q)$ as automorphism group.
引用
收藏
页码:85 / 111
页数:27
相关论文
共 50 条
  • [21] A Characterization of PSL(3. q) for q=2~m
    A.IRANMANESH
    S.H.ALAVI
    B.KHOSRAVI
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (03) : 463 - 472
  • [22] GEOMETRY OF GROUPS PSL3(Q)
    DEMBOWSKI, P
    MATHEMATISCHE ZEITSCHRIFT, 1970, 117 (1-4) : 125 - +
  • [23] A Sylow theorem for the integral group ring of PSL(2, q)
    Margolis, Leo
    JOURNAL OF ALGEBRA, 2016, 445 : 295 - 306
  • [24] Huppert's Analogue Conjecture for PSL(3, q) and PSU(3, q)
    Liu, Yang
    Yang, Yong
    RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [26] The residually weakly primitive geometries of PSL(3, q) with q < 8
    Gailly M.
    Leemans D.
    Aequationes mathematicae, 2004, 67 (1-2) : 195 - 196
  • [27] A characterization of groups PSL(3, q) by their element orders for certain q
    Darafsheh M.R.
    Karamzadeh N.S.
    Journal of Applied Mathematics and Computing, 2002, 9 (2) : 409 - 421
  • [28] Characterization of groups PSL(3, q) by their element orders for certain q
    Darafsheh, M.R.
    Karamzadeh, N.S.
    Journal of Applied Mathematics and Computing, 2002, 9 (02) : 409 - 421
  • [29] A characterization of PSL(3,q) where q is an odd prime power
    Iranmanesh, A
    Alavi, SH
    Khosravi, B
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 170 (2-3) : 243 - 254
  • [30] Geometries for the group PSL(3,4)
    Gottschalk, H
    Leemans, D
    EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (03) : 267 - 291