ALMA observations of doubly deuterated water: inheritance of water from the prestellar environment

被引:28
|
作者
Jensen, S. S. [1 ,2 ]
Jorgensen, J. K. [1 ,2 ]
Kristensen, L. E. [1 ,2 ]
Coutens, A. [3 ,4 ]
van Dishoeck, E. F. [5 ,6 ]
Furuya, K. [7 ]
Harsono, D. [5 ,8 ]
Persson, M., V [9 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
[2] Univ Copenhagen, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
[3] Univ Bordeaux, CNRS, Lab Astrophys Bordeaux, B18N,Allee Geoffroy St Hilaire, F-33615 Pessac, France
[4] Univ Toulouse, UPS OMP, CNRS, CNES,Inst Rech Astrophys & Planetol, 9 Av Colonel Roche, F-31028 Toulouse 4, France
[5] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[6] Max Planck Inst Extraterr Phys MPE, Giessenbachstr, D-85748 Garching, Germany
[7] Natl Astron Observ Japan, Osawa 2-21-1, Mitaka, Tokyo 1818588, Japan
[8] Acad Sinica, Inst Astron & Astrophys, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[9] Chalmers Univ Technol, Dept Space Earth & Environm, Onsala Space Observ, S-43992 Onsala, Sweden
基金
欧洲研究理事会;
关键词
astrochemistry; stars: formation; ISM: abundances; submillimeter: stars; ISM: individual objects: L483; ISM: individual objects: B335 (except planetary nebulae); LOW-MASS PROTOSTARS; INNER REGIONS; DEUTERIUM FRACTIONATION; CHEMICAL HISTORY; IRAS; 16293-2422; STAR-FORMATION; SUBMILLIMETER; DISKS; SPECTROSCOPY; CHEMISTRY;
D O I
10.1051/0004-6361/202140560
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Establishing the origin of the water D/H ratio in the Solar System is central to our understanding of the chemical trail of water during the star and planet formation process. Recent modeling suggests that comparisons of the D2O/HDO and HDO/H2O ratios are a powerful way to trace the chemical evolution of water and, in particular, determine whether the D/H ratio is inherited from the molecular cloud or established locally.Aims. We seek to determine the D2O column density and derive the D2O/HDO ratios in the warm region toward the low-mass Class 0 sources B335 and L483. The results are compared with astrochemical models and previous observations to determine their implications for the chemical evolution of water.Methods. We present ALMA observations of the D2O 1(1,0)-1(0,1) transition at 316.8 GHz toward B335 and L483 at less than or similar to 0.5 (less than or similar to 100 au) resolution, probing the inner warm envelope gas. The column densities of D2O, HDO, and H (18)(2) 218 O are determined by synthetic spectrum modeling and direct Gaussian fitting, under the assumption of a single excitation temperature and similar spatial extent for the three water isotopologs.Results. D2O is detected toward both sources in the inner warm envelope. The derived D2O/HDO ratio is (1.0 +/- 0.2) x 10(-2) for L483 and (1.4 +/- 0.1) x 10(-2) for B335. These values indicate that the D2O/HDO ratio is higher than the HDO/H2O ratios by a factor of greater than or similar to 2 toward both sources.Conclusions. The high D2O/HDO ratios are a strong indication of chemical inheritance of water from the prestellar phase down to the inner warm envelope. This implies that the local cloud conditions in the prestellar phase, such as temperatures and timescales, determine the water chemistry at later stages and could provide a source of chemical differentiation in young systems. In addition, the observed D2O/H2O ratios support an observed dichotomy in the deuterium fractionation of water toward isolated and clustered protostars, namely, a higher D/H ratio toward isolated sources.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Adult energy requirements predicted from doubly labeled water
    Andrew Plucker
    Diana M. Thomas
    Nick Broskey
    Corby K. Martin
    Dale Schoeller
    Robin Shook
    Steven B. Heymsfield
    James A. Levine
    Leanne A. Redman
    International Journal of Obesity, 2018, 42 : 1515 - 1523
  • [22] Quantitative Indexes and Methods of Benefit of Water Environment from Water Conservancy
    Shao Dongguo
    Zhao Dan
    Feng Lanjie
    PROCEEDINGS OF THE 2ND INTERNATIONAL YELLOW RIVER FORUM ON KEEPING HEALTHY LIFE OF THE RIVER, VOL V, 2005, : 38 - 44
  • [23] Interstellar Water Chemistry: From Laboratory to Observations
    van Dishoeck, Ewine F.
    Herbst, Eric
    Neufeld, David A.
    CHEMICAL REVIEWS, 2013, 113 (12) : 9043 - 9085
  • [24] SOME OBSERVATIONS ON THE EVAPORATION OF WATER FROM CELLULOSE
    BOGATY, H
    CAMPBELL, KS
    APPEL, WD
    TEXTILE RESEARCH JOURNAL, 1952, 22 (02) : 75 - 81
  • [25] Assessment of energy intake underreporting by doubly labeled water and observations on reported nutrient intakes in children
    Champagne, CM
    Baker, NB
    DeLany, JP
    Harsha, DW
    Bray, GA
    JOURNAL OF THE AMERICAN DIETETIC ASSOCIATION, 1998, 98 (04) : 426 - +
  • [26] REMOVAL OF DEUTERATED BORIC ACID FROM HEAVY WATER BY ION EXCHANGE RESIN
    SILVERMAN, L
    BRADSHAW, W
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1956, 48 (08): : 1242 - 1247
  • [27] Second-epoch ALMA Observations of 321 GHz Water Maser Emission in NGC 4945 and the Circinus Galaxy
    Hagiwara, Yoshiaki
    Horiuchi, Shinji
    Imanishi, Masatoshi
    Edwards, Philip G.
    ASTROPHYSICAL JOURNAL, 2021, 923 (02):
  • [28] MEASUREMENTS OF FATTY-ACID SYNTHESIS BY INCORPORATION OF DEUTERIUM FROM DEUTERATED WATER
    PATTON, GM
    LOWENSTEIN, JM
    BIOCHEMISTRY, 1979, 18 (14) : 3186 - 3188
  • [29] Predicting doubly labeled water energy expenditure from ambulatory activity
    Tudor-Locke, Catrine
    Martin, Corby K.
    Brashear, Meghan M.
    Rood, Jennifer C.
    Katzmarzyk, Peter T.
    Johnson, William D.
    APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2012, 37 (06) : 1091 - 1100
  • [30] DETERMINATION OF SELENIUM IN WATER SAMPLES FROM ENVIRONMENT
    MASSEE, R
    VANDERSLOOT, HA
    DAS, HA
    JOURNAL OF RADIOANALYTICAL CHEMISTRY, 1977, 35 (01): : 157 - 165