A Machine-Learning Approach for the Prediction of Internal Corrosion in Pipeline Infrastructures

被引:1
|
作者
Canonaco, Giuseppe [1 ]
Roveri, Manuel [1 ]
Alippi, Cesare [1 ]
Podenzani, Fabrizio [2 ]
Bennardo, Antonio [2 ]
Conti, Marco [2 ]
Mancini, Nicola [2 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
[2] Eni, Res & Technol Innovat Dept Proc Engn & Modelling, Milan, Italy
关键词
corrosion prediction; pipeline infrastructures; machine learning;
D O I
10.1109/I2MTC50364.2021.9460039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pipeline infrastructures, moving either gas or oil from one place to another through their entire lifespan, suffer from internal corrosion. This phenomenon could be very dangerous both for the environment and human being. The former due to potential leakages of the fluids carried by the infrastructure itself, whereas the latter due to accidents which may cause explosions in presence of gas leakages. Therefore, it is crucial to design predictive mechanisms able to improve prevention and control of this phenomenon [1]. Unfortunately, the pipeline corrosion is not understood to the point of developing a mechanistic model, which would solve the prevention and control needs associated to the management of such infrastructures. Moreover, the phenomenon is complex enough to cause semi-empirical models to fail in reproducing its behavior. Recently, Machine Learning (ML) techniques have proven their capabilities in modeling complex phenomena given enough and appropriate data, becoming a promising potential solution for corrosion prediction. Unfortunately, in the literature, the proposed solutions are based on small data sets or the performance evaluations are not appropriately performed impairing the claims and the obtained results. For these reasons, in this paper, we introduce a ML-based approach to model the corrosion phenomenon comprising the data set creation, the definition of the ML-based model and its evaluation. Finally, we apply the above mentioned solution on real-world data.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences
    Matt, Jeremy E.
    Rizzo, Donna M.
    Javed, Ali
    Eppstein, Margaret J.
    Manukyan, Viktoria
    Gramling, Cailin
    Dewoolkar, Advik Mandar
    Gramling, Robert
    JOURNAL OF PALLIATIVE MEDICINE, 2023, 26 (12) : 1627 - 1633
  • [42] Development and internal validation of diagnostic prediction models using machine-learning algorithms in dogs with hypothyroidism
    Corsini, Andrea
    Lunetta, Francesco
    Alboni, Fabrizio
    Drudi, Ignazio
    Faroni, Eugenio
    Fracassi, Federico
    FRONTIERS IN VETERINARY SCIENCE, 2023, 10
  • [43] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [44] Risk Prediction Models for Graft Failure after Liver Transplantation: A Machine-Learning Approach
    Kwong, Allison J.
    O'Connell, Chloe
    Kanzawa, Mia
    Hufker, Katherine
    Lindsay, Neil
    Kim, W. Ray
    HEPATOLOGY, 2018, 68 : 668A - 669A
  • [45] LSO-080 Machine-learning approach on lupus low disease activity prediction
    Faelnar, Nick
    Tee, Michael
    Tee, Cherica
    Caro, Jaime
    Solano, Geoffrey
    Kandane-Rathnayake, Rangi
    Magbitang-Santiago, Angelene Therese
    Salido, Evelyn
    Golder, Vera
    Louthrenoo, Worawit
    Chen, Yi-Hsing
    Cho, Jiacai
    Lateef, Aisha
    Hamijoyo, Laniyati
    Luo, Shue-Fen
    Wu, Yeong-Jian J.
    Navarra, Sandra
    Zamora, Leonid
    Li, Zhanguo
    Sockalingam, Sargunan
    Katsumata, Yasuhiro
    Harigai, Masayoshi
    Hao, Yanjie
    Zhang, Zhuoli
    Basnayake, B. M. D. B.
    Chann, Madelynn
    Kikuchi, Jun
    Takeuchi, Tsutomu
    Bae, Sang-Cheol
    Oon, Shereen
    O'Neill, Sean
    Goldblatt, Fiona
    Ng, Kristine
    Law, Annie
    Tugnet, Nicola
    Kumar, Sunil
    Ohkubo, Naoaki
    Tanaka, Yoshiya
    Lau, Chak Sing
    Nikpour, Mandana
    Hoi, Alberta
    Morand, Eric
    LUPUS SCIENCE & MEDICINE, 2023, 10 (SUPPL_1): : A84 - A84
  • [46] Crime analysis and prediction using machine-learning approach in the case of Hossana Police Commission
    Wubineh, Betelhem Zewdu
    SECURITY JOURNAL, 2024, 37 (04) : 1269 - 1284
  • [47] Prediction of future cognitive impairment among the community elderly: a machine-learning based approach
    Na, K. S.
    EUROPEAN PSYCHIATRY, 2019, 56 : S431 - S431
  • [48] A Machine-Learning Approach for Earthquake Magnitude Estimation
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (01)
  • [49] MACE: A Machine-learning Approach to Chemistry Emulation
    Maes, Silke
    De Ceuster, Frederik
    van de Sande, Marie
    Decin, Leen
    ASTROPHYSICAL JOURNAL, 2024, 969 (02):
  • [50] A machine-learning approach to predict postprandial hypoglycemia
    Seo, Wonju
    Lee, You-Bin
    Lee, Seunghyun
    Jin, Sang-Man
    Park, Sung-Min
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)