Certifiably Robust Variational Autoencoders

被引:0
|
作者
Barrett, Ben [1 ]
Camuto, Alexander [1 ,3 ]
Willetts, Matthew [2 ,3 ]
Rainforth, Tom [1 ]
机构
[1] Univ Oxford, Oxford, England
[2] UCL, London, England
[3] Alan Turing Inst, London, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an approach for training variational autoencoders (VAEs) that are certifiably robust to adversarial attack. Specifically, we first derive actionable bounds on the minimal size of an input perturbation required to change a VAE's reconstruction by more than an allowed amount, with these bounds depending on certain key parameters such as the Lipschitz constants of the encoder and decoder. We then show how these parameters can be controlled, thereby providing a mechanism to ensure a priori that a VAE will attain a desired level of robustness. Moreover, we extend this to a complete practical approach for training such VAEs to ensure our criteria are met. Critically, our method allows one to specify a desired level of robustness upfront and then train a VAE that is guaranteed to achieve this robustness. We further demonstrate that these Lipschitz-constrained VAEs are more robust to attack than standard VAEs in practice.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Variational Clustering: Leveraging Variational Autoencoders for Image Clustering
    Prasad, Vignesh
    Das, Dipanjan
    Bhowmick, Brojeshwar
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [42] Certifiably robust interpretation via Renyi differential privacy
    Liu, Ao
    Chen, Xiaoyu
    Liu, Sijia
    Xia, Lirong
    Gan, Chuang
    ARTIFICIAL INTELLIGENCE, 2022, 313
  • [43] Training Variational Autoencoders with Buffered Stochastic Variational Inference
    Shu, Rui
    Bui, Hung H.
    Whang, Jay
    Ermon, Stefano
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [44] LABEL NOISE ROBUST IMAGE REPRESENTATION LEARNING BASED ON SUPERVISED VARIATIONAL AUTOENCODERS IN REMOTE SENSING
    Sumbul, Gencer
    Demir, Begum
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 646 - 649
  • [45] LEARNING UTTERANCE-LEVEL NORMALISATION USING VARIATIONAL AUTOENCODERS FOR ROBUST AUTOMATIC SPEECH RECOGNITION
    Tan, Shawn
    Sim, Khe Chai
    2016 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2016), 2016, : 43 - 49
  • [46] Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother
    Canchumuni, Smith W. A.
    Emerick, Alexandre A.
    Pacheco, Marco Aurelio C.
    COMPUTERS & GEOSCIENCES, 2019, 128 : 87 - 102
  • [47] Dynamic Joint Variational Graph Autoencoders
    Mahdavi, Sedigheh
    Khoshraftar, Shima
    An, Aijun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 385 - 401
  • [48] Laplacian Pyramid of Conditional Variational Autoencoders
    Dorta, Garoe
    Vicente, Sara
    Agapito, Lourdes
    Campbell, Neill D. F.
    Prince, Simon
    Simpson, Ivor
    14TH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION (CVMP), 2017,
  • [49] EnsVAE: Ensemble Variational Autoencoders for Recommendations
    Drif, Ahlem
    Zerrad, Houssem Eddine
    Cherifi, Hocine
    IEEE ACCESS, 2020, 8 : 188335 - 188351
  • [50] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788