Sparse kernel partial least squares regression

被引:15
|
作者
Momma, M [1 ]
Bennett, KP
机构
[1] Rensselaer Polytech Inst, Dept Decis Sci & Engn Syst, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
来源
关键词
D O I
10.1007/978-3-540-45167-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Partial Least Squares Regression (PLS) and its kernel version (KPLS) have become competitive regression approaches. KPLS performs as well as or better than support vector regression (SVR) for moderately-sized problems with the advantages of simple implementation, less training cost, and easier tuning of parameters. Unlike SVR, KPLS requires manipulation of the full kernel matrix and the resulting regression function requires the full training data. In this paper we rigorously derive a sparse KPLS algorithm. The underlying KPLS algorithm is modified to maintain sparsity in all steps of the algorithm. The resulting nu-KPLS algorithm explicitly models centering and bias rather than using kernel centering. An epsilon-insensitive loss function is used to produce sparse solutions in the dual space. The final regression function for the nu-KPLS algorithm only requires a relatively small set of support vectors.
引用
收藏
页码:216 / 230
页数:15
相关论文
共 50 条
  • [31] A twist to partial least squares regression
    Indahl, U
    JOURNAL OF CHEMOMETRICS, 2005, 19 (01) : 32 - 44
  • [32] Partial least trimmed squares regression
    Xie, Zhonghao
    Feng, Xi'an
    Chen, Xiaojing
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 221
  • [33] Spectral Partial Least Squares Regression
    Chen, Jiangfenng
    Yuan, Baozong
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1351 - 1354
  • [34] Partial least median of squares regression
    Xie, Zhonghao
    Feng, Xi'an
    Li, Limin
    Chen, Xiaojing
    JOURNAL OF CHEMOMETRICS, 2022, 36 (08)
  • [35] Envelopes and partial least squares regression
    Cook, R. D.
    Helland, I. S.
    Su, Z.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (05) : 851 - 877
  • [36] A note on sparse least-squares regression
    Boutsidis, Christos
    Magdon-Ismail, Malik
    INFORMATION PROCESSING LETTERS, 2014, 114 (05) : 273 - 276
  • [37] Sparse discriminative least squares regression model
    Zheng, Junjie
    Yuan, Haoliang
    Lai, Loi Lei
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (04)
  • [38] Kernel partial least squares for speaker recognition
    Srinivasan, Balaji Vasan
    Garcia-Romero, Daniel
    Zotkin, Dmitry N.
    Duraiswami, Ramani
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 500 - +
  • [39] SEMISUPERVISED KERNEL ORTHONORMALIZED PARTIAL LEAST SQUARES
    Izquierdo-Verdiguier, Emma
    Arenas-Garcia, Jeronimo
    Munoz-Romero, Sergio
    Gomez-Chova, Luis
    Camps-Valls, Gustavo
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [40] Kernel Partial Least Squares for Stationary Data
    Singer, Marco
    Krivobokova, Tatyana
    Munk, Axel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18