A note on almost Riemann Solitons and gradient almost Riemann Solitons

被引:6
|
作者
De, Krishnendu [1 ]
De, Uday Chand [2 ]
机构
[1] Univ Burdwan, Kabi Sukanta Mahavidyalaya, Dept Math, PO Angus, Hooghly 712221, W Bengal, India
[2] Univ Calcutta, Dept Pure Math, Kolkata, W Bengal, India
关键词
3-dimensional normal almost contact metric manifold; Almost Riemann soliton; Gradient almost Riemann soliton; CONTACT METRIC MANIFOLDS; RICCI SOLITONS;
D O I
10.1007/s13370-022-01010-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the offering article is to investigate an almost Riemann soliton and a gradient almost Riemann soliton in a non-cosymplectic normal almost contact metric manifold M-3. Before all else, it is proved that if the metric of M-3 is a Riemann soliton with divergence-free potential vector field Z, then the manifold is quasi-Sasakian and is of constant sectional curvature -lambda, provided alpha, beta = constant. Also, it is shown that if the metric of M-3 is an almost Riemann Soliton and Z is pointwise collinear with. and has constant divergence, then Z is a constant multiple of xi and the almost Riemann Soliton reduces to a Riemann soliton, provided alpha, beta =constant. Additionally, it is established that if M-3 with alpha, beta = constant admits a gradient almost Riemann soliton (gamma, xi, lambda), then the manifold is either quasi-Sasakian or is of constant sectional curvature -(alpha(2) - beta(2)). Finally, we develop an example of M-3 admitting a Riemann soliton.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Correction to: Triviality and Rigidity of Almost Riemann Solitons (vol 21,81,2024)
    Ghosh, Amalendu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (06)
  • [22] Almost quasi-Yamabe solitons and gradient almost quasi-yamabe solitons in paracontact geometry
    De, Krishnendu
    De, Uday Chand
    QUAESTIONES MATHEMATICAE, 2021, 44 (11) : 1429 - 1440
  • [23] GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1101 - 1114
  • [24] GRADIENT RICCI SOLITONS ON ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    De, Uday Chand
    Liu, Ximin
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 227 - 235
  • [25] CHARACTERIZATIONS OF IMMERSED GRADIENT ALMOST RICCI SOLITONS
    Aquino, Cicero P.
    de Lima, Henrique F.
    Gomes, Jose N. V.
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) : 289 - 305
  • [26] On Submanifolds as Riemann Solitons
    Adara M. Blaga
    Cihan Özgür
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [27] On Submanifolds as Riemann Solitons
    Blaga, Adara M.
    Ozgur, Cihan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [28] Invariant solutions for gradient Ricci almost solitons
    Leandro, Benedito
    Pina, Romildo
    Fleury Bezerra, Tatiana Pires
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 123 - 138
  • [29] A NOTE ON STATIC MANIFOLDS AND ALMOST RICCI SOLITONS
    Ahmadzadeh, Reihaneh
    Ghahremani-Gol, Hajar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02): : 631 - 634
  • [30] Invariant solutions for gradient Ricci almost solitons
    Benedito Leandro
    Romildo Pina
    Tatiana Pires Fleury Bezerra
    São Paulo Journal of Mathematical Sciences, 2020, 14 : 123 - 138