A note on almost Riemann Solitons and gradient almost Riemann Solitons

被引:6
|
作者
De, Krishnendu [1 ]
De, Uday Chand [2 ]
机构
[1] Univ Burdwan, Kabi Sukanta Mahavidyalaya, Dept Math, PO Angus, Hooghly 712221, W Bengal, India
[2] Univ Calcutta, Dept Pure Math, Kolkata, W Bengal, India
关键词
3-dimensional normal almost contact metric manifold; Almost Riemann soliton; Gradient almost Riemann soliton; CONTACT METRIC MANIFOLDS; RICCI SOLITONS;
D O I
10.1007/s13370-022-01010-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the offering article is to investigate an almost Riemann soliton and a gradient almost Riemann soliton in a non-cosymplectic normal almost contact metric manifold M-3. Before all else, it is proved that if the metric of M-3 is a Riemann soliton with divergence-free potential vector field Z, then the manifold is quasi-Sasakian and is of constant sectional curvature -lambda, provided alpha, beta = constant. Also, it is shown that if the metric of M-3 is an almost Riemann Soliton and Z is pointwise collinear with. and has constant divergence, then Z is a constant multiple of xi and the almost Riemann Soliton reduces to a Riemann soliton, provided alpha, beta =constant. Additionally, it is established that if M-3 with alpha, beta = constant admits a gradient almost Riemann soliton (gamma, xi, lambda), then the manifold is either quasi-Sasakian or is of constant sectional curvature -(alpha(2) - beta(2)). Finally, we develop an example of M-3 admitting a Riemann soliton.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A note on almost Riemann Solitons and gradient almost Riemann Solitons
    Krishnendu De
    Uday Chand De
    Afrika Matematika, 2022, 33
  • [2] Almost Riemann Solitons and Gradient Almost Riemann Solitons on LP-Sasakian Manifolds
    De, Krishnendu
    FILOMAT, 2021, 35 (11) : 3759 - 3766
  • [3] Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds
    Venkatesha, V.
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (07)
  • [4] RIEMANN SOLITONS ON (κ, μ)-ALMOST COSYMPLECTIC MANIFOLDS
    Gowda, Prakasha D.
    Naik, Devaraja M.
    Ravindranatha, Amruthalakshmi M.
    Venkatesha, Venkatesha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 881 - 892
  • [5] Triviality and Rigidity of Almost Riemann Solitons
    Ghosh, Amalendu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [6] A note on almost quasi Yamabe solitons and gradient almost quasi Yamabe solitons
    Ghosh, Sujit
    De, Uday Chand
    Yildiz, Ahmet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 770 - 777
  • [7] Remarks on almost Riemann solitons with gradient or torse-forming vector field
    Blaga, Adara M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3215 - 3227
  • [8] Remarks on almost Riemann solitons with gradient or torse-forming vector field
    Adara M. Blaga
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3215 - 3227
  • [9] Riemann Solitons on Almost Co-Kahler Manifolds
    Biswas, Gour Gopal
    Chen, Xiaomin
    De, Uday Chand
    FILOMAT, 2022, 36 (04) : 1403 - 1413
  • [10] A note on almost Ricci solitons
    Deshmukh, Sharief
    Al-Sodais, Hana
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)