Visual Motion Discrimination by Propagating Patterns in Primate Cerebral Cortex

被引:18
|
作者
Townsend, Rrory G. [1 ,2 ]
Solomon, Selina S. [2 ,3 ]
Martin, Paul R. [2 ,3 ,4 ]
Solomon, Samuel G. [3 ,5 ]
Gong, Pulin [1 ,2 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[2] Univ Sydney, Australian Res Council Ctr Excellence Integrat Br, Sydney, NSW 2006, Australia
[3] Univ Sydney, Discipline Physiol, Sydney, NSW 2006, Australia
[4] Univ Sydney, Save Sight Inst, Sydney, NSW 2006, Australia
[5] UCL, Dept Expt Psychol, London WC1P 0AH, England
来源
JOURNAL OF NEUROSCIENCE | 2017年 / 37卷 / 42期
基金
澳大利亚研究理事会;
关键词
cerebral cortex; cortical oscillations; cortical waves; local field potentials; spatiotemporal dynamics; visual processing; AREA MT; TRAVELING-WAVES; NEURONAL SYNCHRONY; BRAIN DYNAMICS; PHASE-RESET; MONKEY; RESPONSES; INTEGRATION; OSCILLATIONS; SELECTIVITY;
D O I
10.1523/JNEUROSCI.1538-17.2017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Visual stimuli can evoke waves of neural activity that propagate across the surface of visual cortical areas. The relevance of these waves for visual processing is unknown. Here, we measured the phase and amplitude of local field potentials (LFPs) in electrode array recordings from the motion-processing medial temporal(MT) area of anesthetized male marmosets. Animals viewed grating or dot-field stimuli drifting in different directions. We found that, on individual trials, the direction of LFP wave propagation is sensitive to the direction of stimulus motion. Propagating LFP patterns are also detectable in trial-averaged activity, but the trial-averaged patterns exhibit different dynamics and behaviors from those in single trials and are similar across motion directions. We show that this difference arises because stimulus-sensitive propagating patterns are present in the phase of single-trial oscillations, whereas the trial-averaged signal is dominated by additive amplitude effects. Our results demonstrate that propagating LFP patterns can represent sensory inputs at timescales relevant to visually guided behaviors and raise the possibility that propagating activity patterns serve neural information processing in area MT and other cortical areas.
引用
收藏
页码:10074 / 10084
页数:11
相关论文
共 50 条
  • [41] Propagating Waves in Visual Cortex: A Large-Scale Model of Turtle Visual Cortex
    Zoran Nenadic
    Bijoy K. Ghosh
    Philip Ulinski
    Journal of Computational Neuroscience, 2003, 14 : 161 - 184
  • [42] Suppressive Traveling Waves Shape Representations of Illusory Motion in Primary Visual Cortex of Awake Primate
    Chemla, Sandrine
    Reynaud, Alexandre
    di Volo, Matteo
    Zerlaut, Yann
    Perrinet, Laurent
    Destexhe, Alain
    Chavane, Frederic
    JOURNAL OF NEUROSCIENCE, 2019, 39 (22): : 4282 - 4298
  • [43] DEVELOPMENT AND PLASTICITY OF THE PRIMATE CEREBRAL-CORTEX
    SCHWARTZ, ML
    GOLDMANRAKIC, P
    CLINICS IN PERINATOLOGY, 1990, 17 (01) : 83 - 102
  • [44] Cerebral blood flow modeling in primate cortex
    Guibert, Romain
    Fonta, Caroline
    Plouraboue, Franck
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2010, 30 (11): : 1860 - 1873
  • [45] Transcriptional Profiling of Layers of the Primate Cerebral Cortex
    Molnar, Zoltan
    Belgard, T. Grant
    NEURON, 2012, 73 (06) : 1053 - 1055
  • [46] Evolutionary anatomy of the primate cerebral cortex.
    Keverne, B
    AMERICAN JOURNAL OF HUMAN BIOLOGY, 2002, 14 (01) : 81 - 82
  • [47] Evolutionary anatomy of the primate cerebral cortex.
    Weber, GW
    CURRENT ANTHROPOLOGY, 2003, 44 (03) : 446 - 447
  • [48] Distributed Hierarchical Processing in the Primate Cerebral Cortex
    Felleman, Daniel J.
    Van Essen, David C.
    CEREBRAL CORTEX, 1991, 1 (01) : 1 - 47
  • [49] Neural correlates of attention in primate visual cortex
    Treue, S
    TRENDS IN NEUROSCIENCES, 2001, 24 (05) : 295 - 300
  • [50] MEYNERT CELLS IN PRIMATE VISUAL-CORTEX
    CHANPALAY, V
    PALAY, SL
    BILLINGSGAGLIARDI, S
    JOURNAL OF NEUROCYTOLOGY, 1974, 3 (05): : 631 - 658