Properties of Steel Fiber-Reinforced Alkali-Activated Slag Concrete Made with Recycled Concrete Aggregates and Dune Sand

被引:21
|
作者
El-Hassan, Hilal [1 ]
Medljy, Jamal [1 ]
El-Maaddawy, Tamer [1 ]
机构
[1] UAE Univ, Dept Civil & Environm Engn, Al Ain 15551, U Arab Emirates
关键词
alkali-activated slag; steel fibers; dune sand; recycled concrete aggregate; hardened properties; analytical regression model; FLY-ASH; MECHANICAL-PROPERTIES; COARSE AGGREGATE; DURABILITY PROPERTIES; GEOPOLYMER CONCRETE; DEMOLITION WASTE; PERFORMANCE; BEHAVIOR; CEMENT; MICROSTRUCTURE;
D O I
10.3390/su13148017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reutilizing industrial by-products and recycled concrete aggregates (RCA) to replace cement and natural aggregates (NA) in concrete is becoming increasingly important for sustainable development. Yet, experimental evidence is needed prior to the widespread use of this sustainable concrete by the construction industry. This study examines the performance of alkali-activated slag concrete made with RCA and reinforced with steel fibers. Natural coarse aggregates were replaced with RCA. Steel fibers were added to mixes incorporating RCA at different volume fractions. Desert dune sand was used as fine aggregate. The mechanical and durability properties of plain and steel fiber-reinforced concrete made with RCA were experimentally examined. The results showed that the compressive strength did not decrease in plain concrete mixes with 30 and 70% RCA replacement. However, full replacement of NA with RCA resulted in a 20% reduction in the compressive strength of the plain mix. In fact, 100% RCA mixes could only be produced with compressive strength comparable to that of an NA-based control mix in conjunction with 2% steel fiber, by volume. In turn, at least 1% steel fiber, by volume, was required to maintain comparable splitting tensile strength. Furthermore, RCA replacement led to higher water absorption and sorptivity and lower bulk resistivity, ultrasonic pulse velocity, and abrasion resistance. Steel fiber incorporation in RCA-based mixes densified the concrete and improved its resistance to abrasion, water permeation, and transport, thereby enhancing its mechanical properties to exceed that of the NA-based counterpart. The hardened properties were correlated to 28-day cylinder compressive strength through analytical regression models.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] PROPERTIES AND DURABILITY OF ALKALI-ACTIVATED SLAG CONCRETE
    DOUGLAS, E
    BILODEAU, A
    MALHOTRA, VM
    ACI MATERIALS JOURNAL, 1992, 89 (05) : 509 - 516
  • [22] New analytical models to predict the mechanical performance of steel fiber-reinforced alkali-activated concrete
    Rossi, Laura
    Patel, Ravi A.
    Dehn, Frank
    STRUCTURAL CONCRETE, 2024,
  • [23] Mechanical properties of alkali-activated slag concrete mixed by seawater and sea sand
    Yang, Shutong
    Xu, Jinjin
    Zang, Chaohui
    Li, Rui
    Yang, Qiubo
    Sun, Shuguang
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 196 : 395 - 410
  • [24] Mechanical Properties and Durability of Polypropylene and Steel Fiber-Reinforced Recycled Aggregates Concrete (FRRAC): A Review
    Zhang, Peng
    Yang, Yonghui
    Wang, Juan
    Hu, Shaowei
    Jiao, Meiju
    Ling, Yifeng
    SUSTAINABILITY, 2020, 12 (22) : 1 - 28
  • [25] Effect of recycled aggregate and steel fiber contents on the mechanical properties and sustainability aspects of alkali-activated slag-based concrete
    Li, Biao
    Yu, Shiting
    Gao, Benhao
    Li, Yang
    Wu, Fanghong
    Xia, Dongtao
    Chi, Yin
    Wang, Songbo
    JOURNAL OF BUILDING ENGINEERING, 2023, 66
  • [26] Effect of Recycled Fine Aggregates on the Mechanical and Drying Shrinkage Properties of Alkali-Activated Recycled Concrete
    Luo, Ling
    Yao, Wu
    Liao, Gang
    MATERIALS, 2024, 17 (09)
  • [27] A hybrid technique adopted for study on the properties of alkali-activated binder concrete by using recycled concrete aggregates
    Periyasamy, L.
    Nagarajan, V.
    Seethapathi, M.
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2024, 25 (01)
  • [28] Effect of fiber content and stress-strength ratio on the creep of basalt fiber-reinforced alkali-activated slag concrete
    Zhou, Xianyu
    Zheng, Wenzhong
    Zeng, Yusheng
    Xu, Chonghao
    Chen, Pang
    STRUCTURAL CONCRETE, 2022, 23 (01) : 382 - 394
  • [29] Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks
    Ren, Pengfei
    Li, Bo
    Yu, Jin-Guang
    Ling, Tung-Chai
    JOURNAL OF CLEANER PRODUCTION, 2020, 267
  • [30] Impact Resistance of Rubberized Alkali-Activated Concrete Incorporating Recycled Aggregate and Recycled Steel Fiber
    Che, Weixian
    Li, Lei
    Chen, Zhongmin
    Liang, Donghua
    Guo, Yongchang
    BUILDINGS, 2024, 14 (02)