Independent component analysis for tensor-valued data

被引:23
|
作者
Virta, Joni [1 ]
Li, Bing [2 ]
Nordhausen, Klaus [1 ,3 ]
Oja, Hannu [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
[2] Penn State Univ, Dept Stat, 326 Thomas Bldg, University Pk, PA 16802 USA
[3] Vienna Univ Technol, Inst Stat & Math Methods Econ, CSTAT Computat Stat, Wiedner Hauptstr 7, A-1040 Vienna, Austria
基金
美国国家科学基金会; 芬兰科学院;
关键词
FOBI; Kronecker structure; Matrix-valued data; Multilinear algebra; DIMENSION REDUCTION; MATRIX; REGRESSION; ROBUST; MODELS; PCA;
D O I
10.1016/j.jmva.2017.09.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In preprocessing tensor-valued data, e.g., images and videos, a common procedure is to vectorize the observations and subject the resulting vectors to one of the many methods used for independent component analysis (ICA). However, the tensor structure of the original data is lost in the vectorization and, as a more suitable alternative, we propose the matrix- and tensor fourth order blind identification (MFOBI and TFOBI). In these tensorial extensions of the classic fourth order blind identification (FOBI) we assume a Kronecker structure for the mixing and perform FOBI simultaneously on each direction of the observed tensors. We discuss the theory and assumptions behind MFOBI and TFOBI and provide two different algorithms and related estimates of the unmixing matrices along with their asymptotic properties. Finally, simulations are used to compare the method's performance with that of classical FOBI for vectorized data and we end with a real data clustering example. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 192
页数:21
相关论文
共 50 条
  • [21] Vector- and tensor-valued descriptors for spatial patterns
    Beisbart, C
    Dahlke, R
    Mecke, K
    Wagner, H
    MORPHOLOGY OF CONDENSED MATTER: PHYSICS AND GEOMETRY OF SPATIALLY COMPLEX SYSTEMS, 2002, 600 : 238 - 260
  • [22] LARGE-DATA GLOBAL GENERALIZED SOLUTIONS IN A CHEMOTAXIS SYSTEM WITH TENSOR-VALUED SENSITIVITIES
    Winkler, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (04) : 3092 - 3115
  • [23] ON 3RD ORDER TENSOR-VALUED ISOTROPIC FUNCTIONS
    PENNISI, S
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1992, 30 (05) : 679 - 692
  • [24] A normal distribution for tensor-valued random variables: Applications to diffusion tensor MRI
    Basser, PJ
    Pajevic, S
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (07) : 785 - 794
  • [25] Tensor-valued diffusion magnetic resonance imaging in a radiotherapy setting
    Brynolfsson, Patrik
    Lerner, Minna
    Sundgren, Pia C.
    Gustafsson, Christian Jamtheim
    Nilsson, Markus
    Szczepankiewicz, Filip
    Olsson, Lars E.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 24 : 144 - 151
  • [26] BLIND SOURCE SEPARATION FOR NONSTATIONARY TENSOR-VALUED TIME SERIES
    Virta, J.
    Nordhausen, K.
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [27] Spectral expansions of homogeneous and isotropic tensor-valued random fields
    Malyarenko, Anatoliy
    Ostoja-Starzewski, Martin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [28] REPRESENTATION OF HIGHER-ORDER TENSOR-VALUED ISOTROPIC FUNCTIONS
    SILBER, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (09): : 381 - 393
  • [29] Matérn Class Tensor-Valued Random Fields and Beyond
    Nikolai Leonenko
    Anatoliy Malyarenko
    Journal of Statistical Physics, 2017, 168 : 1276 - 1301
  • [30] Spectral expansions of homogeneous and isotropic tensor-valued random fields
    Anatoliy Malyarenko
    Martin Ostoja-Starzewski
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67