A Stochastic Maximum Principle for Control Problems Constrained by the Stochastic Navier-Stokes Equations

被引:3
|
作者
Benner, Peter [1 ]
Trautwein, Christoph [1 ,2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
[2] Friedrich Schiller Univ Jena, Inst Math, Ernst Abbe Pl 2, D-07743 Jena, Germany
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / SUPPL 1期
关键词
Stochastic Navier-Stokes equations; Stochastic control; Nonconvex optimization; Maximum principle; REGULARITY; STABILITY; SUBJECT; DRIVEN; SPACE; NOISE; MILD; LR;
D O I
10.1007/s00245-021-09792-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the control problem of the stochastic Navier-Stokes equations in multidimensional domains considered in Benner and Trautwein (Math Nachr 292(7):1444-1461, 2019) restricted to noise terms defined by a Q-Wiener process. The cost functional related to this control problem is nonconvex. Using a stochastic maximum principle, we derive a necessary optimality condition to obtain explicit formulas the optimal controls have to satisfy. Moreover, we show that the optimal controls satisfy a sufficient optimality condition. As a consequence, we are able to solve uniquely control problems constrained by the stochastic Navier-Stokes equations especially for two-dimensional as well as for three-dimensional domains.
引用
收藏
页码:S1001 / S1054
页数:54
相关论文
共 50 条
  • [21] STOCHASTIC NAVIER-STOKES EQUATIONS ARE A COUPLED PROBLEM
    Rang, Joachim
    Matthies, Hermann G.
    COMPUTATIONAL METHODS IN MARINE ENGINEERING V (MARINE 2013), 2013, : 278 - 288
  • [22] Ergodicity for stochastic equations of Navier-Stokes type
    Brzezniak, Zdzislaw
    Komorowski, Tomasz
    Peszat, Szymon
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [23] Stochastic Navier-Stokes equations for turbulent flows
    Mikulevicius, R
    Rozovskii, BL
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) : 1250 - 1310
  • [24] Stochastic Navier-Stokes Equations for Compressible Fluids
    Breit, Dominic
    Hofmanova, Martina
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (04) : 1183 - 1250
  • [25] Stochastic Navier-Stokes Equations and Related Models
    Bianchi, Luigi Amedeo
    Flandoli, Franco
    MILAN JOURNAL OF MATHEMATICS, 2020, 88 (01) : 225 - 246
  • [26] Dynamic programming for the stochastic Navier-Stokes equations
    da Prato, G
    Debussche, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02): : 459 - 475
  • [27] STATISTICAL SOLUTIONS OF STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, NJ
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) : 927 - 940
  • [28] Navier-Stokes equations for stochastic lattice gases
    Esposito, R
    Marra, R
    Yau, HT
    PHYSICAL REVIEW E, 1996, 53 (05): : 4486 - 4489
  • [29] Stochastic cascades applied to the Navier-Stokes equations
    Thomann, E
    Ossiander, M
    PROBABILISTIC METHODS IN FLUIDS, PROCEEDINGS, 2003, : 287 - 297
  • [30] Stochastic Navier-Stokes Equations and Related Models
    Luigi Amedeo Bianchi
    Franco Flandoli
    Milan Journal of Mathematics, 2020, 88 : 225 - 246