Anisotropic p,q-Laplacian equations when p goes to 1

被引:17
|
作者
Mercaldo, A. [1 ]
Rossi, J. D. [2 ]
Segura de Leon, S. [3 ]
Trombetti, C. [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Alicante, Dept Anal Matemat, E-03080 Alicante, Spain
[3] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
关键词
Anisotropic problems; p-Laplacian equation; 1-Laplacian equation; DIVERGENCE-MEASURE FIELDS; HIGH-FREQUENCY ASYMPTOTICS; EXISTENCE; PROPAGATION; REGULARITY; MEDIA;
D O I
10.1016/j.na.2010.07.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p-Laplacian equation with respect to a group of variables and as the q-Laplacian equation with respect to the other variables (1 < p < q), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1, showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the first group of variables. Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3546 / 3560
页数:15
相关论文
共 50 条
  • [21] On a class of singular anisotropic (p, q)-equations
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 545 - 571
  • [22] Anisotropic (p, q)-equations with superlinear reaction
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 1737 - 1755
  • [23] ANISOTROPIC(p,q)-EQUATIONS WITH COMPETITION PHENOMENA
    刘振海
    Nikolaos S.PAPAGEORGIOU
    Acta Mathematica Scientia, 2022, 42 (01) : 299 - 322
  • [24] Anisotropic (p, q)-Equations with Competition Phenomena
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    ACTA MATHEMATICA SCIENTIA, 2021, 42 (1) : 299 - 322
  • [25] Anisotropic (p, q)-equations with competition phenomena
    Zhenhai Liu
    Nikolaos S. Papageorgiou
    Acta Mathematica Scientia, 2022, 42 : 299 - 322
  • [26] Nodal solutions for anisotropic (p, q)-equations
    Zeng, Shengda
    Papageorgiou, Nikolaos S.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [27] On a class of singular anisotropic (p, q)-equations
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Revista Matemática Complutense, 2022, 35 : 545 - 571
  • [28] Anisotropic Variable Exponent (p(.),q(.))-Laplacian with Large Exponents
    Perez-Llanos, Mayte
    ADVANCED NONLINEAR STUDIES, 2013, 13 (04) : 1003 - 1034
  • [29] The asymptotic behavior for anisotropic parabolic p-Laplacian equations
    Qian, Chenyin
    Yuan, Daorui
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (10) : 1968 - 1984
  • [30] MULTIPLE SOLUTIONS FOR A DISCRETE ANISOTROPIC (p1(k), p2(k))-LAPLACIAN EQUATIONS
    Hssini, El Miloud
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,