Comment on "Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning"

被引:5
|
作者
Bratchenko, Ivan A. [1 ]
Bratchenko, Lyudmila A. [1 ]
机构
[1] Samara Natl Res Univ, Laser & Biotech Syst Dept, Moskovskoe Shosse 34, Samara 443086, Russia
基金
俄罗斯科学基金会;
关键词
Comment; Raman spectroscopy; Skin cancer; Classification model validation;
D O I
10.1016/j.artmed.2022.102252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper comments on the article "Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning" by D.C. Araujo et al. The authors apply Raman spectroscopy for the classification of benign and malignant skin neoplasms based on their Raman spectra. Despite the high performance of the proposed technique it may provide unreasonably high accuracy because of incorrect cross-validation procedure. To confirm the possibility to discriminate neoplasm skin tissues based on Raman spectra analysis the authors should provide additional data regarding utilized cross-validation procedure.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning
    Araujo, Daniella Castro
    Veloso, Adriano Alonso
    de Oliveira Filho, Renato Santos
    Giraud, Marie-Noelle
    Raniero, Leandro Jose
    Ferreira, Lydia Masako
    Bitar, Renata Andrade
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 120
  • [2] Early diagnosis of citrus Huanglongbing by Raman spectroscopy and machine learning
    Kong, Lili
    Liu, Tianyuan
    Qiu, Honglin
    Yu, Xinna
    Wang, Xianda
    Huang, Zhiwei
    Huang, Meizhen
    LASER PHYSICS LETTERS, 2024, 21 (01)
  • [3] Characterizing viral samples using machine learning for Raman and absorption spectroscopy
    Boodaghidizaji, Miad
    Athalye, Shreya Milind
    Thakur, Sukirt
    Esmaili, Ehsan
    Verma, Mohit S. S.
    Ardekani, Arezoo M. M.
    MICROBIOLOGYOPEN, 2022, 11 (06):
  • [4] Analysis of tuberculosis disease through Raman spectroscopy and machine learning
    Khan, Saranjam
    Ullah, Rahat
    Shahzad, Shaheen
    Anbreen, Nasira
    Bilal, Muhammad
    Khan, Asifullah
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2018, 24 : 286 - 291
  • [5] Discriminating model for skin cancer diagnosis in vivo through Raman spectroscopy
    Silveira, Fabricio Luiz
    Pacheco, Marcos Tadeu T.
    Bodanese, Benito
    Zangaro, Renato Amaro
    Silveira, Landulfo, Jr.
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS IX, 2013, 8565
  • [6] Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools: comment
    Bratchenko, Ivan A.
    Artemyev, Dmitry N.
    Khristoforova, Yulia A.
    Bratchenko, Lyudmila A.
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (09): : 4489 - 4491
  • [7] Enhancing lung cancer diagnostics through Raman spectroscopy and machine learning
    Ullah, Rahat
    Parveen, Kiran
    Rehan, Imran
    Khan, Saranjam
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [8] Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer
    Yang, Junqing
    Xu, Pei
    Wu, Siyi
    Chen, Zhou
    Fang, Shiyan
    Xiao, Haibo
    Hu, Fengqing
    Jiang, Lianyong
    Wang, Lei
    Mo, Bin
    Ding, Fangbao
    Lin, Linley Li
    Ye, Jian
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 317
  • [9] Comment on “Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy”
    Vincenzo De Giorgi
    Federica Scarfì
    Alessia Gori
    Alessandro Topa
    Luciana Trane
    Francesca Portelli
    Piero Covarelli
    British Journal of Cancer, 2019, 120 : 864 - 864
  • [10] Comment on "Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy"
    De Giorgi, Vincenzo
    Scarfi, Federica
    Gori, Alessia
    Topa, Alessandro
    Trane, Luciana
    Portelli, Francesca
    Covarelli, Piero
    BRITISH JOURNAL OF CANCER, 2019, 120 (08) : 864 - 864