Active ingredients and molecular targets of Taraxacum mongolicum against hepatocellular carcinoma: network pharmacology, molecular docking, and molecular dynamics simulation analysis

被引:5
|
作者
Zheng, Yanfeng [1 ]
Ji, Shaoxiu [1 ]
Li, Xia [1 ]
Feng, Quansheng [1 ]
机构
[1] Chengdu Univ Tradit Chinese Med, Basic Med Coll, Chengdu, Sichuan, Peoples R China
来源
PEERJ | 2022年 / 10卷
关键词
Taraxacum Mongolicum; Hepatocellular carcinoma; Network pharmacology; Molecular docking; Molecular dynamics simulation; CANCER CELLS; PATHWAY; POLYSACCHARIDES; OFFICINALE;
D O I
10.7717/peerj.13737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. Taraxacum mongolicum (TM) is a widely used herb. Studies have reported that TM exhibits growth-inhibitory and apoptosis-inducing on multiple tumors, including hepatocellular carcinoma (HCC). The active ingredients, targets, and molecular mechanisms of TM against HCC need to be further elucidated. Methods. We identified the active ingredients and targets of TM via HERB, PubChem, SwissADME, SwissTargetPrediction, and PharmMapper. We searched HCC targets from GeneCards, Comparative Toxicogenomics Database (CTD), and DisGeNET. Then, the intersection of drug targets and disease targets was uploaded to the STRING database to construct protein-protein interactions (PPI) networking whose topology parameters were analyzed in Cytoscape software to screen hub targets. Next, we used Metascape for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and we employed AutoDock vina, AMBER18 and PyMOL software along with several auxiliary tools for molecular docking and molecular dynamics (MD) simulation. Finally, based on the in silico findings, cellular experiments were conducted to investigate the effect of TM on HSP90AA1 gene expression. Results. A total of 228 targets and 35 active ingredients were identified. Twenty two hub targets were selected through PPI networking construction for further investigation. The enrichment analysis showed that protein kinase binding, mitogenactivated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were mainly involved. Molecular docking and MD simulation results supported good interaction between HSP90 protein and Austricin/Quercetin. The in vitro assay showed that TM inhibited the proliferation of HepG2 cells and the expression of HSP90AA1 gene. Conclusions. This study is the first to use network pharmacology, molecular docking, MD simulation and cellular experiments to elucidate the active ingredients, molecular targets, and key biological pathways responsible for TM anti-HCC, providing a theoretical basis for further research.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Decoding the mechanism of andrographolide to combat hepatocellular carcinoma: a network pharmacology integrated molecular docking and dynamics approach
    Dixit, Nandan
    Motwani, Harsha
    Patel, Saumya K.
    Rawal, Rakesh M.
    Solanki, Hiteshkumar A.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024, 42 (19): : 10237 - 10255
  • [22] Mechanisms of Luteolin Against Gastro-Esophageal Reflux Disease Based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Wang, Xinyu
    Yan, Changhong
    Wang, Tong
    Li, Yajing
    Zheng, Zeyi
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2025, 83 (01) : 403 - 414
  • [23] Exploring novel targets of sitagliptin for type 2 diabetes mellitus: Network pharmacology, molecular docking, molecular dynamics simulation, and SPR approaches
    Qi, Jian-hong
    Chen, Pu-yu
    Cai, Ding-yuan
    Wang, Yi
    Wei, Yue-lei
    He, Su-ping
    Zhou, Wei
    FRONTIERS IN ENDOCRINOLOGY, 2023, 13
  • [24] Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes
    Luo, Wenfeng
    Deng, Jie
    He, Jiecheng
    Yin, Liang
    You, Rong
    Zhang, Lingkun
    Shen, Jian
    Han, Zeping
    Xie, Fangmei
    He, Jinhua
    Guan, Yanqing
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (14) : 1959 - 1974
  • [25] Exploring the targets and molecular mechanism of glycyrrhetinic acid against diabetic nephropathy based on network pharmacology and molecular docking
    Meng, Fan-Di
    Yuan, Ling
    Xu, Duo-Jie
    Che, Meng-Ying
    Hou, Shao-Zhang
    Lu, Dou-Dou
    Liu, Wen-Jing
    Nan, Yi
    WORLD JOURNAL OF DIABETES, 2023, 14 (11) : 1672 - 1692
  • [26] Network Pharmacology and Reverse Molecular Docking-Based Prediction of the Molecular Targets and Pathways for Avicularin Against Cancer
    Duan, Chaohui
    Li, Yang
    Dong, Xiaorui
    Xu, Weibin
    Ma, Yingli
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2019, 22 (01) : 4 - 12
  • [27] Molecular targets and mechanisms of Sijunzi decoction in the treatment of Parkinson's disease: evidence from network pharmacology, molecular docking, molecular dynamics simulation, and experimental validation
    Jiang, Yang
    Wu, Wanfeng
    Xie, Le
    Zhou, Yue
    Yang, Kailin
    Wu, Dahua
    Xu, Wenfeng
    Fang, Rui
    Ge, Jinwen
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [28] Exploring the active ingredients and mechanism of Shenzhi Tongxin capsule against microvascular angina based on network pharmacology and molecular docking
    Xuan, Xiaoyu
    Zhang, Shiliang
    MEDICINE, 2023, 102 (26) : E34190
  • [29] Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy
    Zhang, Mingxu
    Yang, Jiawei
    Zhao, Xiulan
    Zhao, Ying
    Zhu, Siquan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] Identification of Targets and Active Components of Yiqi SanJie Formula Against Lung Neoplasms Based on Network Pharmacology Analysis and Molecular Docking
    Zhou, Tian-jiao
    Liu, Jun-feng
    Wang, Ping
    Hu, An-na
    Chen, Lin-lin
    Zan, Jun-feng
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (02)