Parameter adaptive global synchronization of Lorenz chaotic systems

被引:2
|
作者
d'Anjou, A [1 ]
Sarasola, C [1 ]
Torrealdea, FJ [1 ]
Graña, M [1 ]
机构
[1] EHU, UPV, Comp Sci Dpt, San Sebastian, Spain
关键词
D O I
10.1109/ASSPCC.2000.882521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A parameter adaptive rule that globally synchronizes oscillatory Lorenz chaotic systems with initially different parameter values is reported. The response system is defined according to a master-slave type of coupling that guarantees synchronization when parameters are identical. The parameters of the response system are then adapted to reach convergence to the drive parameters. The rule is very robust and works efficiently with different coupling schemes. Although, in general, it needs to have access to the three state variables of the drive system, if some information about the parameters is available it can be readapted to work less demandingly. For instance, we report here global synchronization that requires access to variable x only, when one parameter from the drive system is known.
引用
收藏
页码:471 / 476
页数:6
相关论文
共 50 条
  • [21] Nonlinear feedback mismatch synchronization of Lorenz chaotic systems
    School of Science, Southern Yangtze Univ., Wuxi 214122, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2007, 8 (1346-1348):
  • [22] Optimal Fuzzy Synchronization of Generalized Lorenz Chaotic Systems
    Pourkargar, Davood Babaei
    Shahrokhi, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (01): : 27 - 36
  • [23] On global synchronization of chaotic systems
    Liao, XX
    Chen, GR
    Wang, HO
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2255 - 2259
  • [24] On global synchronization of chaotic systems
    Liao, XX
    Chen, GR
    Wang, HO
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 865 - 872
  • [25] Synchronization of chaotic systems with parameter driven by a chaotic signal
    Li, GH
    CHAOS SOLITONS & FRACTALS, 2005, 26 (05) : 1485 - 1489
  • [26] An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty
    Behinfaraz, Reza
    Badamchizadeh, Mohammadali
    Ghiasi, Amir Rikhtegar
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4468 - 4479
  • [27] Adaptive Synchronization between Two Delayed Chaotic Systems Based on Parameter Identification
    Wang, Lidan
    Duan, Shukai
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2008, : 590 - 594
  • [28] Adaptive generalized projective synchronization in different chaotic systems based on parameter identification
    Li, Rui-Hong
    Xu, Wei
    Li, Shuang
    PHYSICS LETTERS A, 2007, 367 (03) : 199 - 206
  • [29] Based-Parameter Adaptive Synchronization of Time-Delay Chaotic Systems
    Huang, Ying
    Yin, Lan
    Ding, Wei
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT II, 2012, 7332 : 431 - 439
  • [30] Parameter self-adaptive synchronization control for a kind of financial chaotic systems
    PU XingchengWANG HaiyingDepartment of Mathematics and PhysicsChongqing University of Posts and TelecommunicationsChongqing PRChinaChongqing University of Posts and TelecommunicationsChongqing PRChina
    重庆邮电大学学报(自然科学版), 2009, 21 (02) : 217 - 221