Biomechanical effects of interbody cage height on adjacent segments in patients with lumbar degeneration: a 3D finite element study

被引:6
|
作者
Lu, Xiao [1 ]
Li, Dachuan [1 ]
Wang, Hongli [1 ]
Xia, Xinlei [1 ]
Ma, Xiaosheng [1 ]
Lv, Feizhou [1 ]
Zou, Fei [1 ]
Jiang, Jianyuan [1 ]
机构
[1] Fudan Univ, Huashan Hosp, Dept Orthoped, 12 Middle Wulumuqi Rd, Shanghai 200040, Peoples R China
基金
中国国家自然科学基金;
关键词
TLIF; Interbody cage; Intervertebral height; Degenerative lumbar spine; Biomechanics; INTERVERTEBRAL DISC DEGENERATION; ANTERIOR CERVICAL DISKECTOMY; LOW-BACK-PAIN; MECHANICAL-BEHAVIOR; FUSION; DISEASE; SPINE; DISTRACTION; COMPRESSION; LEVEL;
D O I
10.1186/s13018-022-03220-3
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective To investigate the biomechanical effects of interbody cage height on adjacent segments in patients with lumbar degeneration undergoing transforaminal lumbar interbody fusion (TLIF) surgery, so as to provide references for selection of interbody cage. Methods The finite element model of normal lower lumbar spine (L3-S1) was built and validated, then constructed three different degenerative segments in L3-L4, and the cages with different height (8, 10, 12, 14 mm) were implanted into L4-L5 disc. All the twelve models were loaded with pure moment of 7.5 N m to produce flexion, extension, lateral bending and axial rotation motions on lumbar spine, and the effects of cage height on range of motion (RoM) and intervertebral pressure in lumbar spine were investigated. Results The RoM of adjacent segments and the maximum stress of intervertebral discs increased with the increase in cage height, but this trend was not obvious in mild and moderate degeneration groups. After implantation of four different height cages (8, 10, 12, 14 mm), the RoM of L3/L4 segment reached the maximum during extension. The RoM of mild degeneration group was 2.07 degrees, 2.45 degrees, 2.48 degrees, 2.54 degrees, that of moderate degeneration group was 1.79 degrees, 1.97 degrees, 2.05 degrees, 2.05 degrees, and that of severe degeneration group was 1.43 degrees, 1.66 degrees, 1.74 degrees, 1.74 degrees. The stress of L3-L4 intervertebral disc reached the maximum during flexion. The maximum stress of L3-L4 intervertebral disc was 20.16 MPa, 20.28 MPa, 20.31 MPa and 20.33 MPa in the mild group, 20.58 MPa, 20.66 MPa, 20.71 MPa and 20.75 MPa in the moderate group, and 21.27 MPa, 21.40 MPa, 21.50 MPa and 21.60 MPa in the severe group. Conclusion For patients with mild-to-moderate lumbar degenerative disease who need to undergo TLIF surgery, it is recommended that the height of fusion cage should not exceed the original intervertebral space height by 2 mm, while for patients with severe degeneration, a fusion cage close to the original intervertebral height should be selected as far as possible, and the intervertebral space should not be overstretched.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Biomechanical effects of interbody cage height on adjacent segments in patients with lumbar degeneration: a 3D finite element study
    Xiao Lu
    Dachuan Li
    Hongli Wang
    Xinlei Xia
    Xiaosheng Ma
    Feizhou Lv
    Fei Zou
    Jianyuan Jiang
    Journal of Orthopaedic Surgery and Research, 17
  • [2] Biomechanical effects of osteoporosis on adjacent segments after posterior lumbar interbody fusion: A finite element study
    Zhang, Chenchen
    Chang, Minmin
    Zhang, Renwen
    Tang, Shujie
    PAKISTAN JOURNAL OF MEDICAL SCIENCES, 2021, 37 (02) : 403 - 408
  • [3] Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis
    Jincheng Wu
    Qing Feng
    Dongmei Yang
    Hanpeng Xu
    Wangqiang Wen
    Haoxiang Xu
    Jun Miao
    BMC Musculoskeletal Disorders, 24
  • [4] Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis
    Wu, Jincheng
    Feng, Qing
    Yang, Dongmei
    Xu, Hanpeng
    Wen, Wangqiang
    Xu, Haoxiang
    Miao, Jun
    BMC MUSCULOSKELETAL DISORDERS, 2023, 24 (01)
  • [5] Biomechanical effect of proximal multifidus injury on adjacent segments during posterior lumbar interbody fusion: a finite element study
    Wei, Wei
    Wang, Tianhao
    Liu, Jianheng
    Mao, Keya
    Pan, Chun'ang
    Li, Hui
    Zhao, Yongfei
    BMC MUSCULOSKELETAL DISORDERS, 2023, 24 (01)
  • [6] Biomechanical effect of proximal multifidus injury on adjacent segments during posterior lumbar interbody fusion: a finite element study
    Wei Wei
    Tianhao Wang
    Jianheng Liu
    Keya Mao
    Chun’ang Pan
    Hui Li
    Yongfei Zhao
    BMC Musculoskeletal Disorders, 24
  • [7] Biomechanical study of proximal adjacent segment degeneration after posterior lumbar interbody fusion and fixation: a finite element analysis
    Shuai Jiang
    Weishi Li
    Journal of Orthopaedic Surgery and Research, 14
  • [8] Biomechanical study of proximal adjacent segment degeneration after posterior lumbar interbody fusion and fixation: a finite element analysis
    Jiang, Shuai
    Li, Weishi
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2019, 14 (1)
  • [9] Influence of different fusion techniques in lumbar spine over the adjacent segments: A 3D finite element study
    Cegonino, Jose
    Calvo-Echenique, Andrea
    Perez-del Palomar, Amaya
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2015, 33 (07) : 993 - 1000
  • [10] Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion on the Adjacent Segment: A Finite Element Analysis
    Wang, Bingjin
    Hua, Wenbin
    Ke, Wencan
    Lu, Saideng
    Li, Xingsheng
    Zeng, Xianlin
    Yang, Cao
    WORLD NEUROSURGERY, 2019, 126 : E819 - E824