Probabilistic stability assessment of tunnel-support system considering spatial variability in weak rock mass

被引:23
|
作者
Pandit, Bhardwaj [1 ]
Babu, G. L. Sivakumar [1 ]
机构
[1] Indian Inst Sci, Dept Civil Engn, Bangalore, Karnataka, India
关键词
Uncertainty in rock mass; Limit state functions; Spatial variability; Random finite difference method; Probability of failure; RELIABILITY-ANALYSIS; SLOPE STABILITY; EXCAVATION; SIMULATION; DESIGN;
D O I
10.1016/j.compgeo.2021.104242
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Analysis of tunnel-support system stability with uncertain rock mass properties is conducted in this paper. A horseshoe shaped tunnel driven in weak rock mass is analyzed through deterministic, random variable and random field approaches. Performance of the tunnel in probabilistic analysis was assessed by defining three limit states which ensure that tunnel convergence remained below a safe threshold level, the rock bolts installed are embedded sufficiently beyond the depth of yielded rock mass and load induced on liner support does not exceed its capacity. Both unsupported and supported tunnels were analyzed with deterministic, random variable and random field approaches. Fourier series method was applied to discretize the random fields, and random finite difference analysis was conducted using Monte Carlo simulations. Scale of fluctuation (SOF) for isotropic random fields and horizontal and vertical SOF ratios for anisotropic random fields were varied to study their effect on performance of the tunnel and failure mechanisms involved. It was found that SOF significantly influences the output statistics and Pf of the limit states. It was observed that, random variable approach underestimates the performance of the tunnel-support system; however, it can be adopted as conservative option in absence of data required for random field characterization.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Probabilistic Risk Assessment of unsaturated Slope Failure Considering Spatial Variability of Hydraulic Parameters
    Lin Wang
    Chongzhi Wu
    Yongqin Li
    Hanlong Liu
    Wengang Zhang
    Xiang Chen
    KSCE Journal of Civil Engineering, 2019, 23 : 5032 - 5040
  • [42] Probabilistic Risk Assessment of unsaturated Slope Failure Considering Spatial Variability of Hydraulic Parameters
    Wang, Lin
    Wu, Chongzhi
    Li, Yongqin
    Liu, Hanlong
    Zhang, Wengang
    Chen, Xiang
    KSCE JOURNAL OF CIVIL ENGINEERING, 2019, 23 (12) : 5032 - 5040
  • [43] Probabilistic risk assessment of landslide-induced surges considering the spatial variability of soils
    Li, Dian-Qing
    Ding, Ya-Nan
    Tang, Xiao-Song
    Liu, Yong
    ENGINEERING GEOLOGY, 2021, 283
  • [44] Probabilistic assessment of liquefiable soil thickness considering spatial variability and model and parameter uncertainties
    Wang, Y.
    Fu, C.
    Huang, K.
    GEOTECHNIQUE, 2017, 67 (03): : 228 - 241
  • [45] Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass
    Kim, Ji-Won
    Chong, Song-Hun
    Cho, Gye-Chun
    GEOMECHANICS AND ENGINEERING, 2022, 30 (05) : 449 - 460
  • [46] Assessment of tunnel portal stability at jointed rock mass: A comparative case study
    Satici, Ozgur
    Unver, Bahtiyar
    COMPUTERS AND GEOTECHNICS, 2015, 64 : 72 - 82
  • [47] Probabilistic slope stability analysis on marine clay seabed considering spatial variability of soil parameters
    Yu, Long
    Bao, Yang
    Ma, Kunming
    Han, Yunrui
    Yan, Yibin
    Xu, Bin
    Wang, Zhongtao
    Pang, Rui
    FRONTIERS IN BUILT ENVIRONMENT, 2025, 11
  • [48] Probabilistic stability analysis of qanat tunnels in c-φ soil considering soil spatial variability
    Zhang, Yanfei
    Liu, Xianfeng
    Yuan, Shengyang
    Zhang, Tingting
    Song, Jinyang
    Chen, Weizhi
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2023, 27 (12) : 3763 - 3783
  • [49] Probabilistic slope stability analysis considering spatial variability of soil properties: Influence of correlation length
    Sarma, C. P.
    Krishna, A. Murali
    Dey, A.
    Computer Methods and Recent Advances in Geomechanics, 2015, : 1125 - 1130
  • [50] Probabilistic stability analysis of embankment slopes considering the spatial variability of soil properties and seismic randomness
    Zhang Wen-gang
    Wu Jia-hao
    Gu Xin
    Han Liang
    Wang Lin
    JOURNAL OF MOUNTAIN SCIENCE, 2022, 19 (05) : 1464 - 1474