The family of potentials admitting integration of the perturbed two-body problem in regular coordinates

被引:2
|
作者
Poleshchikov, S. M. [1 ]
Zhubr, A. V. [2 ]
机构
[1] Syktyvkar Inst Forestry, Syktyvkar, Russia
[2] Komi Sci Ctr, Dept Math, Syktyvkar, Russia
关键词
45.50.Pk;
D O I
10.1134/S0010952508030039
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
An infinite system of potentials is presented that admits separation of regular variables in the perturbed two-body problem. The regular coordinates are constructed using a specially selected L-matrix. An explicit solution to the problem in the elliptical case is constructed. In the general case the solution is reduced to inversion of hyper-elliptic integrals. The cases of motion with and without constraints are considered. The results of numerical experiments are presented.
引用
收藏
页码:202 / 214
页数:13
相关论文
共 50 条
  • [21] The Perturbed Full Two-body Problem: Application to Post-DART Didymos
    Meyer, Alex J.
    Agrusa, Harrison F.
    Richardson, Derek C.
    Daly, R. Terik
    Fuentes-Munoz, Oscar
    Hirabayashi, Masatoshi
    Michel, Patrick
    Merrill, Colby C.
    Nakano, Ryota
    Cheng, Andrew F.
    Barbee, Brent
    Barnouin, Olivier S.
    Chesley, Steven R.
    Ernst, Carolyn M.
    Gkolias, Ioannis
    Moskovitz, Nicholas A.
    Naidu, Shantanu P.
    Pravec, Petr
    Scheirich, Petr
    Thomas, Cristina A.
    Tsiganis, Kleomenis
    Scheeres, Daniel J.
    PLANETARY SCIENCE JOURNAL, 2023, 4 (08):
  • [22] A novel analytic continuation power series solution for the perturbed two-body problem
    Kevin Hernandez
    Tarek A. Elgohary
    James D. Turner
    John L. Junkins
    Celestial Mechanics and Dynamical Astronomy, 2019, 131
  • [23] Variation of parameters using complex exponentials to solve the perturbed two-body problem
    Henderson, Troy A.
    Radice, Gianmarco
    Junkins, John L.
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 1605 - +
  • [24] APPROXIMATION OF PROBABILITY DENSITY FUNCTIONS PROPAGATED THROUGH THE PERTURBED TWO-BODY PROBLEM
    Mercurio, Michael
    Mandankan, Reza
    Singla, Puneet
    Majji, Manoranjan
    ASTRODYNAMICS 2013, PTS I-III, 2014, 150 : 2457 - 2468
  • [25] A novel analytic continuation power series solution for the perturbed two-body problem
    Hernandez, Kevin
    Elgohary, Tarek A.
    Turner, James D.
    Junkins, John L.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (10):
  • [26] On perturbed two-body problems and harmonic oscillators
    Aparicio, I
    Floria, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1996, 323 (01): : 71 - 76
  • [27] Two-body relaxation in softened potentials
    Theis, C
    ASTRONOMY & ASTROPHYSICS, 1998, 330 (03) : 1180 - 1189
  • [28] Two-body densities and effective potentials
    de Saavedra, FA
    Buendía, E
    Gálvez, FJ
    Sarsa, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2000, 79 (02) : 75 - 81
  • [29] Two-body Problems with Confining Potentials
    Day, Joseph P.
    McEwen, Joseph E.
    Papp, Zoltan
    FEW-BODY SYSTEMS, 2010, 47 (1-2) : 17 - 23
  • [30] UPDATE ON THE TWO-BODY PROBLEM
    Waldner, Liz
    CHICAGO REVIEW, 2017, 60 (03) : 112 - 113