Adaptive Wavelet Schwarz Methods for the Navier-Stokes Equation

被引:0
|
作者
Dahlke, Stephan [1 ]
Lellek, Dominik [1 ]
Lui, Shiu Hong [2 ]
Stevenson, Rob [3 ]
机构
[1] Univ Marburg, Dept Math & Comp Sci, Marburg, Germany
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[3] Univ Amsterdam, Korteweg de Vries KdV Inst Math, Amsterdam, Netherlands
基金
加拿大自然科学与工程研究理事会;
关键词
Adaptive algorithms; decomposition; domain; Navier-Stokes; Schwarz; wavelets; OPERATOR-EQUATIONS; CONVERGENCE; INTERVAL;
D O I
10.1080/01630563.2016.1198916
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are concerned with domain decomposition methods for the stationary incompressible Navier-Stokes equation. We construct an adaptive additive Schwarz method based on discretization by means of a divergence-free wavelet frame. We prove that the method is convergent and asymptotically optimal with respect to the degrees of freedom involved.
引用
收藏
页码:1213 / 1234
页数:22
相关论文
共 50 条
  • [31] The Navier-Stokes equation in noncylindrical domain
    Miranda, MM
    Límaco, J
    COMPUTATIONAL & APPLIED MATHEMATICS, 1997, 16 (03): : 247 - 265
  • [32] Application of Navier-Stokes equation to lubrication
    Hong, YP
    Chen, D
    Kong, XM
    Wang, JD
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 : 58 - 63
  • [33] PROBABILISTIC APPROACH TO THE NAVIER-STOKES EQUATION
    MARRA, R
    PHYSICS LETTERS A, 1990, 148 (1-2) : 41 - 44
  • [34] Scaling Navier-Stokes equation in nanotubes
    Garajeu, Mihail
    Gouin, Henri
    Saccomandi, Giuseppe
    PHYSICS OF FLUIDS, 2013, 25 (08)
  • [35] On the Navier-Stokes limit of the Boltzmann equation
    Belardinelli, D.
    Marra, R.
    NONLINEARITY, 2014, 27 (02) : 209 - 225
  • [36] Extensions to the macroscopic Navier-Stokes equation
    Sorek, S
    Levi-Hevroni, D
    Levy, A
    Ben-Dor, G
    TRANSPORT IN POROUS MEDIA, 2005, 61 (02) : 215 - 233
  • [37] Navier-Stokes equation with hereditary viscosity
    V. Barbu
    S. S. Sritharan
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 449 - 461
  • [38] RELAXATION METHOD FOR NAVIER-STOKES EQUATION
    De Oliveira, P. M. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (04):
  • [39] The second iterate for the Navier-Stokes equation
    Germain, Pierre
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) : 2248 - 2264
  • [40] Approximation of the stochastic Navier-Stokes equation
    Grecksch, W
    Schmalfuss, B
    COMPUTATIONAL & APPLIED MATHEMATICS, 1996, 15 (03): : 227 - 239