Automatic recognition of hand gestures with differential evolution

被引:0
|
作者
De Falco, I. [1 ]
Della Cioppa, A. [2 ]
Maisto, D. [1 ]
Scafuri, U. [1 ]
Tarantino, E. [1 ]
机构
[1] ICAR CNR, Via P Castellino 111, I-80131 Naples, Italy
[2] Univ Salerno, DIIIE Lab, I-84084 Salerno, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic recognition of hand gestures is a crucial step in facing human-computer interaction. Differential Evolution is used to perform automatic classification of hand gestures in a thirteen-class database. Performance of the resulting best individual is computed in terms of error rate on the testing set, and is compared against those of other ten classification techniques well known in literature. Results show the effectiveness and the efficiency of the approach in solving the classification task. Furthermore, the implemented tool allows to extract the most significant parameters for differentiating the collected gestures.
引用
收藏
页码:265 / +
页数:2
相关论文
共 50 条
  • [41] Simultaneous Segmentation and Recognition of Hand Gestures for Human-Robot Interaction
    Vasquez Chavarria, Harold
    Jair Escalante, Hugo
    Enrique Sucar, L.
    2013 16TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2013,
  • [42] Two viewpoints based real-time recognition for hand gestures
    Kumar, Amit Krishan
    Kumar, Abhishek Kaushal
    Guo, Shuli
    IET IMAGE PROCESSING, 2020, 14 (17) : 4606 - 4613
  • [43] An efficient FPGA implementation of hand gestures recognition based on neural networks
    Abdolazimi, Ali
    Molahosseini, Amir Sabbagh
    Keynia, Farshid
    NEXO REVISTA CIENTIFICA, 2021, 34 (02): : 807 - 824
  • [44] The message notification for patients care system using hand gestures recognition
    Inmoonnoy, Vassana
    Ketcham, Mahasak
    2017 INTERNATIONAL CONFERENCE ON DIGITAL ARTS, MEDIA AND TECHNOLOGY (ICDAMT): DIGITAL ECONOMY FOR SUSTAINABLE GROWTH, 2017, : 412 - 416
  • [45] Intelligent Human-Machine Interface Using Hand Gestures Recognition
    Oniga, Stefan
    Vegh, Janos
    Orha, Ioan
    2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, THETA 18TH EDITION, 2012, : 559 - 563
  • [46] LOCALIZATION AND RECOGNITION OF DYNAMIC HAND GESTURES BASED ON HIERARCHY OF MANIFOLD CLASSIFIERS
    Favorskaya, M.
    Nosov, A.
    Popov, A.
    PHOTOGRAMMETRIC TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2015, 40-5 (W6): : 1 - 8
  • [47] Hand Gestures Recognition using Machine Learning for control of Multiple quadrotors
    Redrovan, David Valencia
    Kim, Donghan
    2018 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2018, : 394 - 399
  • [48] Hand Gestures Recognition Based on Lightweight Evolving Fuzzy Clustering Method
    Lekova, Anna K.
    Dimitrova, Maya I.
    2013 IEEE SECOND INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2013, : 505 - 510
  • [49] Robust Interactive Method for Hand Gestures Recognition Using Machine Learning
    Alteaimi, Amal Abdullah Mohammed
    Ben Othman, Mohamed Tahar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 577 - 595
  • [50] Hand Gestures Recognition in Confined Spaces with Partial Observability and Occultation Constraints
    Shirkhodaie, Amir
    Chan, Alex
    Hu, Shuowen
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXV, 2016, 9842