Size Scaling of Plastic Deformation in Simple Shear: Fractional Strain-Gradient Plasticity and Boundary Effects in Conventional Strain-Gradient Plasticity
被引:5
|
作者:
Dahlberg, Carl F. O.
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol KTH, Dept Solid Mech, S-10044 Stockholm, SwedenRoyal Inst Technol KTH, Dept Solid Mech, S-10044 Stockholm, Sweden
Dahlberg, Carl F. O.
[1
]
Ortiz, Michael
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USARoyal Inst Technol KTH, Dept Solid Mech, S-10044 Stockholm, Sweden
Ortiz, Michael
[2
]
机构:
[1] Royal Inst Technol KTH, Dept Solid Mech, S-10044 Stockholm, Sweden
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
constitutive modeling of materials;
mechanical properties of materials;
plasticity;
FRACTURE;
STRENGTH;
MODEL;
FLOW;
D O I:
10.1115/1.4045872
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
A recently developed model based on fractional derivatives of plastic strain is compared with conventional strain-gradient plasticity (SGP) models. Specifically, the experimental data and observed model discrepancies in the study by Mu et al. (2016, "Dependence of Confined Plastic Flow of Polycrystalline Cu Thin Films on Microstructure," MRS Com. Res. Let. 20, pp. 1-6) are considered by solving the constrained simple shear problem. Solutions are presented both for a conventional SGP model and a model extension introducing an energetic interface. The interface allows us to relax the Dirichlet boundary condition usually assumed to prevail when solving this problem with the SGP model. We show that the particular form of a relaxed boundary condition does not change the underlying size scaling of the yield stress and consequently does not resolve the scaling issue. Furthermore, we show that the fractional strain-gradient plasticity model predicts a yield stress with a scaling exponent that is equal to the fractional order of differentiation.
机构:
SW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R ChinaSW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R China
Qian, LM
Yang, H
论文数: 0引用数: 0
h-index: 0
机构:
SW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R ChinaSW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R China
Yang, H
Zhu, MH
论文数: 0引用数: 0
h-index: 0
机构:
SW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R ChinaSW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R China
Zhu, MH
Zhou, ZR
论文数: 0引用数: 0
h-index: 0
机构:
SW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R ChinaSW Jiaotong Univ, Natl Tract Power Lab, Tribol Res Inst, Chengdu 610031, Peoples R China
机构:
Univ Calif, Dept NanoEngn, San Diego, CA 92093 USA
Univ Calif, Dept Mech & Aerosp Engn, San Diego, CA 92093 USAUniv Calif, Dept NanoEngn, San Diego, CA 92093 USA
机构:
Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio 1, I-67100 Laquila, ItalyUniv Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
Caponi, Maicol
Friedrich, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, GermanyUniv Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
Friedrich, Manuel
Solombrino, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, ItalyUniv Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy