Mixture structure analysis using the Akaike Information Criterion and the bootstrap

被引:8
|
作者
Solka, JL
Wegman, EJ
Priebe, CE
Poston, WL
Rogers, GW
机构
[1] USN, Dahlgren Div, Ctr Surface Warfare, Syst Res & Technol Dept,Adv Computat Technol Grp, Dahlgren, VA 22448 USA
[2] George Mason Univ, Ctr Computat Stat, Fairfax, VA 22030 USA
[3] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
关键词
AIC; bootstrap; cluster analysis; mixture models;
D O I
10.1023/A:1008924323509
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given i.i.d. observations x(1),x(2),x(3),...x(n) drawn from a mixture of normal terms, one is often interested in determining the number of terms in the mixture and their defining parameters. Although the problem of determining the number of terms is intractable under the most general assumptions, there is hope of elucidating the mixture structure given appropriate caveats on the underlying mixture. This paper examines a new approach to this problem based on the use of Akaike Information Criterion (AIC) based pruning of data driven mixture models which are obtained from resampled data sets. Results of the application of this procedure to artificially generated data sets and a real world data set are provided.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [41] Modification of the Akaike information criterion to account for seasonal effects
    Kadilar, C
    Erdemìr, C
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (02) : 135 - 143
  • [42] Matching objective and subjective information in groundwater inverse analysis by Akaike's Bayesian Information Criterion
    Honjo, Y
    Kashiwagi, N
    WATER RESOURCES RESEARCH, 1999, 35 (02) : 435 - 447
  • [43] On bias correction of the Akaike information criterion in linear models
    Noda, K
    Miyaoka, E
    Itoh, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (08) : 1845 - 1857
  • [44] Akaike's information criterion in generalized estimating equations
    Pan, W
    BIOMETRICS, 2001, 57 (01) : 120 - 125
  • [45] The Akaike information criterion in weighted regression of immittance data
    Ingdal, Mats
    Johnsen, Roy
    Harrington, David A.
    ELECTROCHIMICA ACTA, 2019, 317 : 648 - 653
  • [46] Akaike's information criterion for a measure of linkage disequilibrium
    K. Shimo-onoda
    T. Tanaka
    K. Furushima
    T. Nakajima
    S. Toh
    S. Harata
    K. Yone
    S. Komiya
    H. Adachi
    E. Nakamura
    H. Fujimiya
    I. Inoue
    Journal of Human Genetics, 2002, 47 : 649 - 655
  • [47] Akaike's information criterion for a measure of linkage disequilibrium
    Shimo-onoda, K
    Tanaka, T
    Furushima, K
    Nakajima, T
    Toh, S
    Harata, S
    Yone, K
    Komiya, S
    Adachi, H
    Nakamura, E
    Fujimiya, H
    Inoue, I
    JOURNAL OF HUMAN GENETICS, 2002, 47 (12) : 649 - 655
  • [48] The Akaike Information Criterion Will Not Choose the No Common Mechanism Model
    Holder, Mark T.
    Lewis, Paul O.
    Swofford, David L.
    SYSTEMATIC BIOLOGY, 2010, 59 (04) : 477 - 485
  • [49] Finite Sample Improvement of Akaike's Information Criterion
    Saumard, Adrien
    Navarro, Fabien
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6328 - 6343
  • [50] Reliability analysis using bootstrap information criterion for small sample size response functions
    Eshan Amalnerkar
    Tae Hee Lee
    Woochul Lim
    Structural and Multidisciplinary Optimization, 2020, 62 : 2901 - 2913