Federated low-rank tensor projections for sequential recommendation

被引:7
|
作者
Li, Li [1 ]
Lin, Fan [1 ]
Xiahou, Jianbing [1 ,2 ]
Lin, Yuanguo [1 ]
Wu, Pengcheng [3 ]
Liu, Yong [3 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[2] Quanzhou Normal Univ, Quanzhou, Peoples R China
[3] Nanyang Technol Univ, Joint NTU UBC Res Ctr Excellence Act Living Elderl, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Federated learning; Federated recommendation; Sequential recommendation;
D O I
10.1016/j.knosys.2022.109483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems have achieved great success in many fields, benefiting from the accessibility of massive amounts of user behavior data. However, the increasing concern about privacy issues brings new research challenges to traditional data-centralized recommender systems. As a privacy -preserving machine learning technique, federated learning provides potential solutions to these research challenges, by jointly training perceptive global recommendation models based on the decentralized user behavior data. Although existing federated recommendation methods have achieved promising results, they still suffer the following limitations. Firstly, they mainly focus on the horizontal federated recommendation scenarios where the participants are individual users, without considering the scenarios where participants are organizations. Secondly, they tend to model static user preferences and cannot learn the preference evolution in users' interaction sequences. To address these limitations, we propose a horizontal Federated recommendation framework for Sequential Recommendation (FedSeqRec), where the participants are organizations. As the data in different organizations are usually not independent and identically distributed (Non-IID), federated training tends to yield suboptimal results. To alleviate this problem, we propose a federated re-average algorithm, which takes the consistency of the client's data distribution with the overall data distribution into consideration. Moreover, we also leverage a low-rank tensor projection to model user long-term preferences. Experimental results on two real-world datasets demonstrate that FedSeqRec outperforms state-of-the-art federated recommendation methods. The implementation code of FedSeqRec is available at https://github.com/MuziLee-x/FedSeqRec. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Tensor Denoising Using Low-Rank Tensor Train Decomposition
    Gong, Xiao
    Chen, Wei
    Chen, Jie
    Ai, Bo
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1685 - 1689
  • [22] On the equivalence between low-rank matrix completion and tensor rank
    Derksen, Harm
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 645 - 667
  • [23] Low-rank tensor completion by Riemannian optimization
    Kressner, Daniel
    Steinlechner, Michael
    Vandereycken, Bart
    BIT NUMERICAL MATHEMATICS, 2014, 54 (02) : 447 - 468
  • [24] CROSS: EFFICIENT LOW-RANK TENSOR COMPLETION
    Zhang, Anru
    ANNALS OF STATISTICS, 2019, 47 (02): : 936 - 964
  • [25] TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION
    Liu, Zihuan
    Lee, Cheuk Yin
    Zhang, Heping
    ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 1294 - 1318
  • [26] Robust Low-Rank Tensor Ring Completion
    Huang, Huyan
    Liu, Yipeng
    Long, Zhen
    Zhu, Ce
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 1117 - 1126
  • [27] Low-rank tensor completion by Riemannian optimization
    Daniel Kressner
    Michael Steinlechner
    Bart Vandereycken
    BIT Numerical Mathematics, 2014, 54 : 447 - 468
  • [28] Switching Autoregressive Low-rank Tensor Models
    Lee, Hyun Dong
    Warrington, Andrew
    Glaser, Joshua I.
    Linderman, Scott W.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] A Weighted Tensor Factorization Method for Low-rank Tensor Completion
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 30 - 38
  • [30] Low-Rank Tensor Thresholding Ridge Regression
    Guo, Kailing
    Zhang, Tong
    Xu, Xiangmin
    Xing, Xiaofen
    IEEE ACCESS, 2019, 7 : 153761 - 153772