One-harmonic invariant vector fields on three-dimensional Lie groups

被引:5
|
作者
Calvino-Louzao, E. [1 ]
Seoane-Bascoy, J. [1 ]
Vazquez-Abal, M. E. [1 ]
Vazquez-Lorenzo, R. [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
关键词
Harmonic maps; Affine Killing; 1-harmonic vector field; TANGENT BUNDLE; METRICS; TRANSFORMATIONS;
D O I
10.1016/j.geomphys.2012.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine all left-invariant vector fields on three-dimensional Lie groups which define harmonic sections of the corresponding tangent bundles, equipped with the complete lift metric. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1532 / 1547
页数:16
相关论文
共 50 条
  • [31] Invariant Ricci Solitons on Three-Dimensional Metric Lie Groups with Semi-Symmetric Connection
    P. N. Klepikov
    E. D. Rodionov
    O. P. Khromova
    Russian Mathematics, 2021, 65 : 70 - 74
  • [32] Invariant Ricci Solitons on Three-Dimensional Metric Lie Groups with Semi-Symmetric Connection
    Klepikov, P. N.
    Rodionov, E. D.
    Khromova, O. P.
    RUSSIAN MATHEMATICS, 2021, 65 (08) : 70 - 74
  • [33] On Algebras of Three-Dimensional Quaternion Harmonic Fields
    Belishev M.I.
    Journal of Mathematical Sciences, 2017, 226 (6) : 701 - 710
  • [34] Harmonicity of left-Invariant Vector Fields on Einstein Lorentzian Lie Groups
    Aryanejad, Yadollah
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (01): : 65 - 78
  • [35] ONE-HARMONIC STRUCTURES IN THE TWO-DIMENSIONAL INCOMMENSURATE SOLIDS
    DOBROSAVLJEVIC, L
    RADOVIC, Z
    PHYSICAL REVIEW B, 1982, 25 (09) : 6026 - 6029
  • [36] THREE-DIMENSIONAL ALMOST CO-KAHLER MANIFOLDS WITH HARMONIC REEB VECTOR FIELDS
    Wang, Wenjie
    Liu, Ximin
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2017, 58 (02): : 307 - 317
  • [37] INVARIANT RICCI SOLITONS ON THREE-DIMENSIONAL NONUNIMODULAR LIE GROUPS WITH A LEFT-INVARIANT LORENTZIAN METRIC AND A SEMISYMMETRIC CONNECTION
    Klepikov, Pavel Nikolaevich
    Rodionov, Evgeny Dmitrievich
    Khromova, Olesya Pavlovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (01): : 48 - 61
  • [38] Topological segmentation in three-dimensional vector fields
    Mahrous, K
    Bennett, J
    Scheuermann, G
    Hamann, B
    Joy, KI
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (02) : 198 - 205
  • [39] Nonorientable manifolds in three-dimensional vector fields
    Osinga, HM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (03): : 553 - 570
  • [40] On local isometric embeddings of three-dimensional Lie groups
    Yoshio Agaoka
    Takahiro Hashinaga
    Geometriae Dedicata, 2020, 205 : 191 - 219