Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

被引:59
|
作者
Huang, Yu [1 ,3 ]
Guo, Feng [2 ]
Li, Yongling [1 ]
Liu, Yufeng [3 ]
机构
[1] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Baoding, Peoples R China
[2] Xiamen Univ, Sch Informat Sci & Engn, Dept Cognit Sci, Xiamen, Peoples R China
[3] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 01期
关键词
IDENTIFICATION; ATTRACTORS; DYNAMICS;
D O I
10.1371/journal.pone.0114910
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter estimation for fractional-order chaotic systems is an important issue in fractionalorder chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Comments on "Particle swarm optimization with fractional-order velocity"
    Zhang, Xiangyin
    Duan, Haibin
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 427 - 429
  • [32] Comment on “Particle swarm optimization with fractional-order velocity”
    Ling-Yun Zhou
    Shang-Bo Zhou
    Muhammad Abubakar Siddique
    Nonlinear Dynamics, 2014, 77 : 431 - 433
  • [33] Design of Fractional-Order PID Controller (FOPID) for a Class of Fractional-Order MIMO Systems Using a Particle Swarm Optimization (PSO) Approach
    Djari, A.
    Bouden, T.
    Boulkroune, A.
    2013 3D INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2013,
  • [34] A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm
    Ren, Gong
    Yang, Renhuan
    Yang, Renyu
    Zhang, Pei
    Yang, Xiuzeng
    Xu, Chuangbiao
    Hu, Baoguo
    Zhang, Huatao
    Lu, Yaosheng
    Cai, Yanning
    MODERN PHYSICS LETTERS B, 2019, 33 (07):
  • [35] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [36] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    ENTROPY, 2019, 21 (01):
  • [37] Design of Fractional-order Sliding Mode Controller (FSMC) for a class of Fractional-order Non-linear Commensurate Systems using a Particle Swarm Optimization (PSO) Algorithm
    Djari, Abdelhamid
    Bouden, Toufik
    Boulkroune, Abdesselem
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2014, 16 (03): : 46 - 55
  • [38] Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm
    Ma, Jieming
    Man, Ka Lok
    Guan, Sheng-Uei
    Ting, T. O.
    Wong, Prudence W. H.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (03) : 343 - 352
  • [39] Fractional-order Model Identification of Cement Quality based on Improved Particle Swarm Optimization Algorithm and fractional-order PID controller
    Yan, ShuaiShuai
    Zhang, Qiang
    Meng, Liang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1323 - 1329
  • [40] Parameter estimation for chaotic systems using improved bird swarm algorithm
    Xu, Chuangbiao
    Yang, Renhuan
    MODERN PHYSICS LETTERS B, 2017, 31 (36):