Rational synthesis of SnS2@C hollow microspheres with superior stability for lithium-ion batteries

被引:11
|
作者
Yang, Hulin [1 ]
Su, Yanhui [1 ]
Ding, Lin [1 ]
Lin, Jiande [1 ]
Zhu, Ting [1 ]
Liang, Shuquan [1 ]
Pan, Anqiang [1 ]
Cao, Guozhong [2 ]
机构
[1] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
tin disulfide; hollow microspheres; lithium-ion battery; anode material; carbon coating; TEMPLATE-FREE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; OXIDE NANOCOMPOSITES; ANODE MATERIALS; STORAGE; CAPACITY; CARBON; SUPERCAPACITORS; NANOSTRUCTURES; CAPABILITY;
D O I
10.1007/s40843-017-9097-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin-based nanomaterials have been extensively explored as high-capacity anode materials for lithium ion batteries (LIBs). However, the large volume changes upon repeated cycling always cause the pulverization of the electrode materials. Herein, we report the fabrication of uniform SnS2@C hollow microspheres from hydrothermally prepared SnO2@C hollow microspheres by a solid-state sulfurization process. The as-prepared hollow SnS2@C microspheres with unique carbon shell, as electrodes in LIBs, exhibit high reversible capacity of 814 mA h g(-1) at a current density of 100 mA g(-1), good cycling performance (783 mA h g(-1) for 200 cycles maintained with an average degradation rate of 0.02% per cycle) and remarkable rate capability (reversible capabilities of 433 mA h g(-1) at 2 C). The hollow space could serve as extra space for volume expansion during the charge-discharge cycling, while the carbon shell can ensure the structural integrity of the microspheres. The preeminent electrochemical performances of the SnS2@C electrodes demonstrate their promising application as anode materials in the next-generation LIBs.
引用
收藏
页码:955 / 962
页数:8
相关论文
共 50 条
  • [41] Novel SnS2-nanosheet anodes for lithium-ion batteries
    Kim, Tae-Joon
    Kirn, Chunjoong
    Son, Dongyeon
    Choi, Myungsuk
    Park, Byungwoo
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 529 - 535
  • [42] Controllable Preparation and Superior Rate Performance of Spinel LiMn2O4 Hollow Microspheres as Cathode Material for Lithium-ion Batteries
    Wang Shiyao
    Xiao Liang
    Guo Yonglin
    Deng Bohua
    Qu Deyu
    Xie Zhizhong
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2016, 31 (03): : 503 - 508
  • [43] Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries
    Wang, S. Q.
    Zhang, J. Y.
    Chen, C. H.
    SCRIPTA MATERIALIA, 2007, 57 (04) : 337 - 340
  • [44] Controllable preparation and superior rate performance of spinel LiMn2O4 hollow microspheres as cathode material for lithium-ion batteries
    Shiyao Wang
    Liang Xiao
    Yonglin Guo
    Bohua Deng
    Deyu Qu
    Zhizhong Xie
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31 : 503 - 508
  • [45] Novel synthesis of V2O5 hollow microspheres for lithium ion batteries
    Zeng, Lu
    Pan, Anqiang
    Liang, Shuquan
    Wang, Jinbin
    Cao, Guozhong
    SCIENCE CHINA-MATERIALS, 2016, 59 (07) : 567 - 573
  • [46] Controllable Preparation and Superior Rate Performance of Spinel LiMn2O4 Hollow Microspheres as Cathode Material for Lithium-ion Batteries
    王诗瑶
    肖亮
    GUO Yonglin
    DENG Bohua
    QU Deyu
    XIE Zhizhong
    Journal of Wuhan University of Technology(Materials Science), 2016, 31 (03) : 503 - 508
  • [47] Zn-Fe-O@C hollow microspheres as a high performance anode material for lithium-ion batteries
    Zhao, Jiayue
    Su, Junming
    Liu, Siyang
    Chen, Xiang
    Huang, Tao
    Yu, Aishui
    RSC ADVANCES, 2017, 7 (09): : 5459 - 5465
  • [48] Bio-inspired synthesis of carbon hollow microspheres from Aspergillus flavus conidia for lithium-ion batteries
    Liu, Sangui
    Mao, Cuiping
    Wang, Ling
    Jia, Min
    Sun, Qiangqiang
    Liu, Yang
    Xu, Maowen
    Lu, Zhisong
    RSC ADVANCES, 2015, 5 (73): : 59655 - 59658
  • [49] Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries
    Mei, Lin
    Xu, Cheng
    Yang, Ting
    Ma, Jianmin
    Chen, Libao
    Li, Qiuhong
    Wang, Taihong
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (30) : 8658 - 8664
  • [50] Hollow microspheres and nanoparticles MnFe2O4 as superior anode materials for lithium ion batteries
    Wanli Zhang
    Xianhua Hou
    Zanrui Lin
    Lingmin Yao
    Xinyu Wang
    Yumei Gao
    Shejun Hu
    Journal of Materials Science: Materials in Electronics, 2015, 26 : 9535 - 9545