A PARALLEL EDGE ORIENTATION ALGORITHM FOR QUADRILATERAL MESHES

被引:19
|
作者
Homolya, M. [1 ,2 ]
Ham, D. A. [2 ,3 ]
机构
[1] Imperial Coll London, Grantham Inst, London SW7 2AZ, England
[2] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2016年 / 38卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
finite element assembly; parallel algorithm; quadrilateral mesh; Firedrake; ARCHER; UNION-FIND ALGORITHMS;
D O I
10.1137/15M1021325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One approach to achieving correct finite element assembly is to ensure that the local orientation of facets relative to each cell in the mesh is consistent with the global orientation of that facet. Rognes et al. have shown how to achieve this for any mesh composed of simplex elements, and deal. II contains a serial algorithm for constructing a consistent orientation of any quadrilateral mesh of an orientable manifold. The core contribution of this paper is the extension of this algorithm for distributed memory parallel computers, which facilitates its seamless application as part of a parallel simulation system. Furthermore, our analysis establishes a link between the well-known Union-Find algorithm and the construction of a consistent orientation of a quadrilateral mesh. As a result, existing work on the parallelization of the Union-Find algorithm can be easily adapted to construct further parallel algorithms for mesh orientations.
引用
收藏
页码:S48 / S61
页数:14
相关论文
共 50 条
  • [11] QUADRILATERAL MESHES STRIPIFICATION
    Vanecek, Petr
    Svitak, Radek
    Kolingerova, Ivana
    Skala, Vaclav
    ALGORITMY 2005: 17TH CONFERENCE ON SCIENTIFIC COMPUTING, PROCEEDINGS, 2005, : 300 - 308
  • [12] Parameterization of quadrilateral meshes
    Liu, Li
    Zhang, CaiMing
    Cheng, Frank
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 17 - +
  • [13] Quadrilateral Meshes for PSLGs
    Christopher J. Bishop
    Discrete & Computational Geometry, 2016, 56 : 1 - 42
  • [14] Parallel reduction algorithm for massive meshes
    Tang Xinting
    Song Lihua
    Mang Lifeng
    Advanced Computer Technology, New Education, Proceedings, 2007, : 338 - 341
  • [15] Adaptive mesh refinement algorithm for CESE schemes on unstructured quadrilateral meshes
    Shi, Lisong
    Zhang, Chaoxiong
    Wen, Chih-Yung
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 311
  • [16] On optimal bilinear quadrilateral meshes
    D'Azevedo, E
    ENGINEERING WITH COMPUTERS, 1999, 15 (03) : 219 - 227
  • [17] √2 Subdivision for quadrilateral meshes
    Guiqing Li
    Weiyin Ma
    Hujun Bao
    The Visual Computer, 2004, 20 : 180 - 198
  • [18] BOX SCHEMES ON QUADRILATERAL MESHES
    SCHMIDT, T
    COMPUTING, 1993, 51 (3-4) : 271 - 292
  • [19] √2 subdivision for quadrilateral meshes
    Li, GQ
    Ma, WY
    Bao, HJ
    VISUAL COMPUTER, 2004, 20 (2-3): : 180 - 198
  • [20] On Optimal Bilinear Quadrilateral Meshes
    E. D’Azevedo
    Engineering with Computers, 1999, 15 : 219 - 227