Compositionally controlled FePt nanoparticle materials

被引:238
|
作者
Sun, SH [1 ]
Fullerton, EE
Weller, D
Murray, CB
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA
[2] IBM Almaden Res Ctr, San Jose, CA 95120 USA
关键词
FePt nanoparticle; high Ku FePt; magnetic recording; nanoparticle synthesis; self-assembly; thermal annealing;
D O I
10.1109/20.950807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High temperature solution phase decomposition of Fe(CO)(5) and reduction of Pt(acac)(2) in the presence of stabilizers oleic acid and oleyl amine are employed to produce 4 nm diameter FePt nanoparticles. The Fe and Pt composition of the nanoparticle materials can be tuned by adjusting the molar ratio of Fe(CO)(5) to Pt(acac)(2), and the compositions ranging from Fe30Pt70 to Fe80Pt20 are obtained. The nanoparticle materials are easily dispersed into alkane solvent, facilitating their self-organization into nanoparticle superlattices. As synthesized FePt nanoparticles possess disordered fec structure and show superparamagnetic. behavior. Thermal annealing induces the change of internal particle structure and thus the magnetic properties of the particles. Composition dependent structure analysis shows that an annealed FePt nanoparticle assembly with a composition around Fe55Pt45 will lead to the highly ordered fct phase. This Fe55Pt45 nanoparticle assembly yields high coercivity, and will be a candidate for future ultra-high density magnetic recording media applications.
引用
收藏
页码:1239 / 1243
页数:5
相关论文
共 50 条
  • [21] FePt nanoparticle-assembly for magnetic recording media
    Kitamoto, Y
    Sakuma, H
    Jogo, A
    Taniyama, T
    Yamazaki, Y
    Nishio, H
    Yamamoto, H
    MAGNETIC MATERIALS, PROCESSES, AND DEVICES VII AND ELECTRODEPOSITION OF ALLOYS, PROCEEDINGS, 2003, 2002 (27): : 483 - 490
  • [22] Thermal limits on field alignment of nanoparticle FePt media
    Bain, JA
    Egelhoff, WF
    APPLIED PHYSICS LETTERS, 2006, 88 (24)
  • [23] Colloidal Nanoparticle Clusters to produce large FePt nanocrystals
    Ovejero, Jesus G.
    Velasco, Victor
    Abel, Frank M.
    Crespo, Patricia
    Herrasti, Pilar
    Hernando, Antonio
    Hadjipanayis, George C.
    MATERIALS & DESIGN, 2017, 113 : 391 - 396
  • [24] Additive effects of AlN and MgO on FePt nanoparticle assembly
    Okamoto, S
    Kitakami, O
    Shimada, Y
    MATERIALS TRANSACTIONS, 2006, 47 (01) : 43 - 46
  • [25] Process parameters for infrared processing of FePt nanoparticle films
    Sabau, Adrian S.
    Kadolkar, Puja B.
    Dinwiddie, Ralph B.
    Ott, Ronald D.
    Blue, Craig A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2007, 38A (04): : 788 - 797
  • [26] Magnetic hardening in ultrafine FePt nanoparticle assembled films
    Nandwana, V
    Elkins, KE
    Liu, JP
    NANOTECHNOLOGY, 2005, 16 (12) : 2823 - 2826
  • [27] Formation of FePt Nanoparticle Arrays Using Nanohole Templates
    Abdelgawad, A. M.
    Oberdick, S. D.
    Majetich, S.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [28] Ordered FePt Nanoparticle Arrays Prepared by a Micellar Method
    Gao, Y.
    Zhang, X. W.
    Qu, S.
    You, J. B.
    Yin, Z. G.
    Chen, N. F.
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 1234 - 1235
  • [29] Formation and magnetic properties of nanoparticle FePt:Ag films
    Zhan, Xiao-Yuan
    Zhang, Yue
    Gu, You-Song
    Qi, Jun-Jie
    Zheng, Xiao-Lan
    Gongneng Cailiao/Journal of Functional Materials, 2006, 37 (09): : 1436 - 1437
  • [30] Coupling of Optical Resonances in a Compositionally Asymmetric Plasmonic Nanoparticle Dimer
    Sheikholeslami, Sassan
    Jun, Young-wook
    Jain, Prashant K.
    Alivisatos, A. Paul
    NANO LETTERS, 2010, 10 (07) : 2655 - 2660