Von Neumann entropy-preserving quantum operations

被引:14
|
作者
Zhang, Lin [1 ]
Wu, Junde [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
Quantum state; Quantum operation; Von Neumann entropy; MAPS;
D O I
10.1016/j.physleta.2011.10.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a given quantum state rho and two quantum operations phi and psi, the information encoded in the quantum state rho is quantified by its von Neumann entropy S(rho). By the famous Choi-Jamiotkowski isomorphism, the quantum operation phi can be transformed into a bipartite state, the von Neumann entropy S-map(phi) of the bipartite state describes the decoherence induced by phi. In this Letter, we characterize not only the pairs (phi, rho) which satisfy S(phi(rho)) = S(rho), but also the pairs (phi, psi) which satisfy S-map(phi circle psi) = S-map(psi). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4163 / 4165
页数:3
相关论文
共 50 条
  • [21] Non-negativity of conditional von Neumann entropy and global unitary operations
    Patro, Subhasree
    Chakrabarty, Indranil
    Ganguly, Nirman
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [22] Fractal von Neumann entropy
    da Cruz, W
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (3-4) : 446 - 452
  • [23] On the von Neumann entropy of a graph
    Lin, Hongying
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 448 - 455
  • [24] Continuity of the von Neumann Entropy
    M. E. Shirokov
    Communications in Mathematical Physics, 2010, 296 : 625 - 654
  • [25] Von Neumann entropy and majorization
    Li, Yuan
    Busch, Paul
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 384 - 393
  • [26] On the von Neumann entropy of graphs
    Minello, Giorgia
    Rossi, Luca
    Torsello, Andrea
    JOURNAL OF COMPLEX NETWORKS, 2019, 7 (04) : 491 - 514
  • [27] Continuity of the von Neumann Entropy
    Shirokov, M. E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (03) : 625 - 654
  • [28] Von Neumann Entropy in QFT
    Longo, Roberto
    Xu, Feng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 1031 - 1054
  • [29] Von Neumann Entropy in QFT
    Roberto Longo
    Feng Xu
    Communications in Mathematical Physics, 2021, 381 : 1031 - 1054
  • [30] Von Neumann entropy and bipartite number fluctuation in quantum phase transitions
    Chung, Myung-Hoon
    Landau, D. P.
    PHYSICAL REVIEW B, 2011, 83 (11):