Automatic Searching and Pruning of Deep Neural Networks for Medical Imaging Diagnostic

被引:41
|
作者
Fernandes Jr, Francisco Erivaldo [1 ,2 ]
Yen, Gary G. [1 ]
机构
[1] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
[2] Univ Sao Paulo, Inst Math Sci & Comp, BR-13566590 Sao Paulo, Brazil
关键词
Computer architecture; Computational modeling; Biological neural networks; Databases; Medical diagnostic imaging; Architecture growth; architecture pruning; deep neural networks (DNNs); evolution strategy (ES); medical diagnostic; medical imaging; residual neural networks; user preference; SEGMENTATION;
D O I
10.1109/TNNLS.2020.3027308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The field of medical imaging diagnostic makes use of a modality of imaging tests, e.g., X-rays, ultrasounds, computed tomographies, and magnetic resonance imaging, to assist physicians with the diagnostic of patients' illnesses. Due to their state-of-the-art results in many challenging image classification tasks, deep neural networks (DNNs) are suitable tools for use by physicians to provide diagnostic support when dealing with medical images. To further advance the field, the present work proposes a two-phase algorithm capable of automatically generating compact DNN architectures given a database, called here DNNDeepeningPruning. In the first phase, also called the deepening phase, the algorithm grows a DNN by adding blocks of residual layers one after another until the model overfits the given data. In the second phase, called the pruning phase, the algorithm prunes the created DNN model from the first phase to produce a DNN with a small amount of floating-point operations guided by some preference given by the user. The proposed algorithm unifies the two separate fields of DNN architecture searching and pruning under a single framework, and it is tested in two medical imaging data sets with satisfactory results.
引用
收藏
页码:5664 / 5674
页数:11
相关论文
共 50 条
  • [21] A New Pruning Method to Train Deep Neural Networks
    Guo, Haonan
    Ren, Xudie
    Li, Shenghong
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2018, 423 : 767 - 775
  • [22] Task dependent deep LDA pruning of neural networks
    Tian, Qing
    Arbel, Tal
    Clark, James J.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 203
  • [23] Trained Rank Pruning for Efficient Deep Neural Networks
    Xu, Yuhui
    Li, Yuxi
    Zhang, Shuai
    Wen, Wei
    Wang, Botao
    Dai, Wenrui
    Qi, Yingyong
    Chen, Yiran
    Lin, Weiyao
    Xiong, Hongkai
    FIFTH WORKSHOP ON ENERGY EFFICIENT MACHINE LEARNING AND COGNITIVE COMPUTING - NEURIPS EDITION (EMC2-NIPS 2019), 2019, : 14 - 17
  • [24] CUP: Cluster Pruning for Compressing Deep Neural Networks
    Duggal, Rahul
    Xiao, Cao
    Vuduc, Richard
    Duen Horng Chau
    Sun, Jimeng
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5102 - 5106
  • [25] Pruning Deep Neural Networks by Optimal Brain Damage
    Liu, Chao
    Zhang, Zhiyong
    Wang, Dong
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 1092 - 1095
  • [26] Structured Pruning for Deep Convolutional Neural Networks: A Survey
    He, Yang
    Xiao, Lingao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 2900 - 2919
  • [27] Class-dependent Pruning of Deep Neural Networks
    Entezari, Rahim
    Saukh, Olga
    2020 IEEE SECOND WORKSHOP ON MACHINE LEARNING ON EDGE IN SENSOR SYSTEMS (SENSYS-ML 2020), 2020, : 13 - 18
  • [28] Holistic Filter Pruning for Efficient Deep Neural Networks
    Enderich, Lukas
    Timm, Fabian
    Burgard, Wolfram
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2595 - 2604
  • [29] On the Information of Feature Maps and Pruning of Deep Neural Networks
    Soltani, Mohammadreza
    Wu, Suya
    Ding, Jie
    Ravier, Robert
    Tarokh, Vahid
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6988 - 6995
  • [30] Conditional Automated Channel Pruning for Deep Neural Networks
    Liu, Yixin
    Guo, Yong
    Guo, Jiaxin
    Jiang, Luoqian
    Chen, Jian
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1275 - 1279