Vector-valued multiparameter singular integrals and pseudodifferential operators

被引:11
|
作者
Hytoenen, Tuomas [2 ]
Portal, Pierre [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
关键词
vector-valued harmonic analysis; multiparameter Calderon-Zygmund theory; singular integrals; pseudodifferential operators; UMD spaces; property alpha;
D O I
10.1016/j.aim.2007.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider multiparameter singular integrals and pseudodifferential operators acting on mixed-norm Bochner spaces L-p1,...,(pN) (R-n1 x... x R-nN; X) where X is a UMD Banach space satisfying Pisier's property (alpha). These geometric conditions are shown to be necessary. We obtain a vector-valued version of a result by R. Fefferman and Stein, also providing a new, inductive proof of the original scalar-valued theorem. Then we extend a result of Bourgain on singular integrals in UMD spaces with an unconditional basis to a multiparameter situation. Finally we carry over a result of Yamazaki on pseudodifferential operators to the Bochner space setting, improving the known vector-valued results even in the one-parameter case. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:519 / 536
页数:18
相关论文
共 50 条