FedParking: A Federated Learning Based Parking Space Estimation With Parked Vehicle Assisted Edge Computing

被引:69
|
作者
Huang, Xumin [1 ,2 ]
Li, Peichun [1 ,3 ]
Yu, Rong [1 ,4 ]
Wu, Yuan [2 ,5 ]
Xie, Kan [1 ,6 ]
Xie, Shengli [1 ,7 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Macau, Peoples R China
[3] Key Lab Intelligent Detect & Internet Things Mfg, Minist Educ, Guangzhou 510006, Peoples R China
[4] Guangdong Hong Kong Macao Joint Lab Smart Discret, Guangzhou 510006, Peoples R China
[5] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
[6] 111 Ctr Intelligent Batch Mfg Based IoT Technol, Guangzhou 510006, Peoples R China
[7] Guangdong Key Lab IoT Informat Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative work; Games; Computational modeling; Estimation; Data models; Training data; Space vehicles; Federated learning; parked vehicle assisted edge computing; deep reinforcement learning and Stackelberg game; NETWORK;
D O I
10.1109/TVT.2021.3098170
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a distributed learning approach, federated learning trains a shared learning model over distributed datasets while preserving the training data privacy. We extend the application of federated learning to parking management and introduce FedParking in which Parking Lot Operators (PLOs) collaborate to train a long short-term memory model for parking space estimation without exchanging the raw data. Furthermore, we investigate the management of Parked Vehicle assisted Edge Computing (PVEC) by FedParking. In PVEC, different PLOs recruit PVs as edge computing nodes for offloading services through an incentive mechanism, which is designed according to the computation demand and parking capacity constraints derived from FedParking. We formulate the interactions among the PLOs and vehicles as a multi-lead multi-follower Stackelberg game. Considering the dynamic arrivals of the vehicles and time-varying parking capacity constraints, we present a multi-agent deep reinforcement learning approach to gradually reach the Stackelberg equilibrium in a distributed yet privacy-preserving manner. Finally, numerical results are provided to demonstrate the effectiveness and efficiency of our scheme.
引用
收藏
页码:9355 / 9368
页数:14
相关论文
共 50 条
  • [31] Dissatisfaction Feedback and Stackelberg Game-Based Task Offloading Mechanism for Parked Vehicle Edge Computing
    Lei, Songxin
    Guo, Xinyao
    Li, Junyi
    Wang, Yixiao
    Zhang, Yu
    Zheng, Lu
    Wu, Huaming
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4383 - 4388
  • [32] Joint Optimization of Computation Task Allocation and Mobile Charging Scheduling in Parked-Vehicle-Assisted Edge Computing Networks
    Zhang, Wenqiu
    Wang, Ran
    Yi, Changyan
    Zhu, Kun
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III, 2022, 13473 : 406 - 418
  • [33] Prototyping federated learning on edge computing systems
    Jianlei Yang
    Yixiao Duan
    Tong Qiao
    Huanyu Zhou
    Jingyuan Wang
    Weisheng Zhao
    Frontiers of Computer Science, 2020, 14
  • [34] Federated Deep Learning for Heterogeneous Edge Computing
    Ahmed, Khandaker Mamun
    Imteaj, Ahmed
    Amini, M. Hadi
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1146 - 1152
  • [35] Prototyping federated learning on edge computing systems
    Yang, Jianlei
    Duan, Yixiao
    Qiao, Tong
    Zhou, Huanyu
    Wang, Jingyuan
    Zhao, Weisheng
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (06)
  • [36] Federated Learning Protocols for IoT Edge Computing
    Foukalas, Fotis
    Tziouvaras, Athanasios
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15) : 13570 - 13581
  • [37] Federated Learning Game in IoT Edge Computing
    Durand, Stephane
    Khawam, Kinda
    Quadri, Dominique
    Lahoud, Samer
    Martin, Steven
    IEEE ACCESS, 2024, 12 : 93060 - 93074
  • [38] Bias Mitigation in Federated Learning for Edge Computing
    Djebrouni, Yasmine
    Benarba, Nawel
    Touat, Ousmane
    De Rosa, Pasquale
    Bouchenak, Sara
    Bonifati, Angela
    Felber, Pascal
    Marangozova, Vania
    Schiavoni, Valerio
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):
  • [39] Federated Learning in Edge Computing: A Systematic Survey
    Abreha, Haftay Gebreslasie
    Hayajneh, Mohammad
    Serhani, Mohamed Adel
    SENSORS, 2022, 22 (02)
  • [40] Federated Learning for Distributed Reasoning on Edge Computing
    Firouzi, Ramin
    Rahmani, Rahim
    Kanter, Theo
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 419 - 427