Laser-heated diamond anvil cell at the advanced light source beamline 12.2.2

被引:31
|
作者
Caldwell, Wendel A. [1 ]
Kunz, Martin
Celestre, R. S.
Domning, E. E.
Walter, M. J.
Walker, D.
Glossinger, J.
MacDowell, A. A.
Padmore, H. A.
Jeanloz, R.
Clark, S. M.
机构
[1] Univ Calif Berkeley, Dept Planetary Sci & Earth, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England
[4] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA
基金
美国国家科学基金会;
关键词
high-pressure; laser-heating; X-ray diffraction; synchrotron radiation instrumentation;
D O I
10.1016/j.nima.2007.08.113
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The laser-heating system for the diamond anvil cell at endstation 2 of beamline 12.2.2 of the Advanced Light Source in Berkeley, CA, has been constructed and is available for in situ high-pressure high-temperature X-ray experiments. The endstation couples a highbrilliance synchrotron X-ray source with an industrial strength laser to heat and probe samples at high pressure in the diamond anvil cell. The system incorporates an 50W Nd : YLF (cw) laser operated in TEM01* mode. Double-sided heating is achieved by splitting the laser beam into two paths that are directed through the opposing diamond anvils. X-ray transparent mirrors steer the laser beams coaxial with the X-ray beam from the superconducting bending magnet (energy range 6-35 KeV) and direct the emitted light from the heated sample into two separate spectrometers for temperature measurement by spectroradiometry. Objective lenses focus the laser beam to a size of 25 Am diameter (FWHM) in the sample region. An X-ray spot size of 10 Am diameter (FWHM) has been achieved with the installation of a pair of focusing Kirkpatrick-Baez mirrors. A unique aperture configuration has produced an X-ray beam profile that has very low intensity in the tails. The main thrust of the program is aimed at producing in situ high-pressure high-temperature X-ray diffraction data, but other modes of operation, such as X-ray imaging have been accomplished. Technical details of the experimental setup will be presented along with initial results. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 225
页数:5
相关论文
共 50 条
  • [21] The effects of chromatic dispersion on temperature measurement in the laser-heated diamond anvil cell
    Walter, MJ
    Koga, KT
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2004, 143 : 541 - 558
  • [22] The postspinel boundary in pyrolitic compositions determined in the laser-heated diamond anvil cell
    Ye, Yu
    Gu, Chen
    Shim, Sang-Heon
    Meng, Yue
    Prakapenka, Vitali
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (11) : 3833 - 3841
  • [23] Pressure-volume-temperature paths in the laser-heated diamond anvil cell
    Kavner, A
    Duffy, TS
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (03) : 1907 - 1914
  • [24] Development of laser-heated diamond anvil cell facility for synthesis of novel materials
    Subramanian, N.
    Shekar, N. V. Chandra
    Kumar, N. R. Sanjay
    Sahu, P. Ch.
    CURRENT SCIENCE, 2006, 91 (02): : 175 - 182
  • [25] Laser-heated diamond-anvil cell (LHDAC) in materials science research
    Shekar, NVC
    Sahu, PC
    Rajan, KG
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2003, 19 (06) : 518 - 525
  • [26] X-ray diffraction of periclase in a laser-heated diamond-anvil cell
    Fiquet, G
    Andrault, D
    Itie, JP
    Gillet, P
    Richet, P
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1996, 95 (1-2) : 1 - 17
  • [27] Numerical calculations of the temperature distribution and the cooling speed in the laser-heated diamond anvil cell
    Morishima, H
    Yusa, H
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (09) : 4572 - 4577
  • [28] Synthesis of TaC and TaC from tantalum and graphite in the laser-heated diamond anvil cell
    Bayarjargal, Lkhamsuren
    Winkler, Bjoern
    Friedrich, Alexandra
    Juarez-Arellano, Erick A.
    CHINESE SCIENCE BULLETIN, 2014, 59 (36): : 5283 - 5289
  • [29] Leveraging oxide reactive sputtering for thermal insulation in laser-heated diamond anvil cell
    Oka, Kenta
    Inada, Mako
    Okuda, Yoshiyuki
    Hirose, Kei
    HIGH PRESSURE RESEARCH, 2024, 44 (02) : 159 - 167
  • [30] CO2 laser-heated diamond-anvil cell methodology revisited
    Hearne, G
    Bibik, A
    Zhao, J
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (44) : 11531 - 11535