Spatial and temporal patterns of CO2 and CH4 fluxes in China's croplands in response to multifactor environmental changes

被引:65
|
作者
Ren, Wei [1 ,2 ]
Tian, Hanqin [1 ,2 ]
Xu, Xiaofeng [1 ,2 ]
Liu, Mingliang [1 ,2 ]
Lu, Chaoqun [1 ,2 ]
Chen, Guangsheng [1 ,2 ]
Melillo, Jerry [3 ]
Reilly, John [4 ]
Liu, Jiyuan [5 ]
机构
[1] Auburn Univ, Sch Forestry & Wildlife Sci, Ecosyst Dynam & Global Ecol Lab, Auburn, AL 36849 USA
[2] Auburn Univ, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA
[3] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[4] MIT, Joint Program Sci & Policy Global Change, Cambridge, MA 02139 USA
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
来源
关键词
SOIL ORGANIC-CARBON; LAND-COVER CHANGE; METHANE EMISSIONS; STOMATAL CONDUCTANCE; CLIMATE VARIABILITY; OZONE POLLUTION; GAS EMISSIONS; MODEL; RESPIRATION; TILLAGE;
D O I
10.1111/j.1600-0889.2010.00522.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The spatial and temporal patterns of CO2 and CH4 fluxes in China's croplands were investigated and attributed to multifactor environmental changes using the agricultural module of the Dynamic Land Ecosystem Model (DLEM), a highly integrated process-based ecosystem model. During 1980-2005 modelled results indicated that China's croplands acted as a carbon sink with an average carbon sequestration rate of 33.4 TgC yr-1 (1 Tg = 1012 g). Both the highest net CO2 uptake rate and the largest CH4 emission rate were found in southeast region of China's croplands. Of primary influences were land-cover and land-use change, atmospheric CO2 and nitrogen deposition, which accounted for 76%, 42% and 17% of the total carbon sequestration in China's croplands during the study period, respectively. The total carbon losses due to elevated ozone and climate variability/change were equivalent to 27% and 9% of the total carbon sequestration, respectively. Our further analysis indicated that nitrogen fertilizer application accounted for 60% of total national carbon uptake in cropland, whereas changes in paddy field areas mainly determined the variability of CH4 emissions. Our results suggest that improving air quality by means such as reducing ozone concentration and optimizing agronomic practices can enhance carbon sequestration capacity of China's croplands.
引用
收藏
页码:222 / 240
页数:19
相关论文
共 50 条
  • [31] ATMOSPHERIC CH4, CO, AND CO2
    WOFSY, SC
    MCCONNELL, JC
    MCELROY, MB
    JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (24): : 4477 - +
  • [32] ATMOSPHERIC CH4, CO AND CO2
    WOFSY, SC
    MCELROY, MB
    MCCONNEL.JC
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (07): : 722 - &
  • [33] CH4 and CO2 conversion
    Hu, Yun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [34] Study on the influence of coal fire on the temporal and spatial distribution of CO2 and CH4 gas emissions
    Shao, Zhuangzhuang
    Tan, Bo
    Li, Tianze
    Guo, Meiyan
    Hu, Ruili
    Guo, Yan
    Wang, Haiyan
    Yan, Jun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (31) : 76702 - 76711
  • [35] CO2 reforming of CH4
    Bradford, MCJ
    Vannice, MA
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01): : 1 - 42
  • [36] Study on the influence of coal fire on the temporal and spatial distribution of CO2 and CH4 gas emissions
    Zhuangzhuang Shao
    Bo Tan
    Tianze Li
    Meiyan Guo
    Ruili Hu
    Yan Guo
    Haiyan Wang
    Jun Yan
    Environmental Science and Pollution Research, 2023, 30 : 76702 - 76711
  • [37] Spatial and temporal variations of dissolved gases (CH4, CO2, and O-2) in peat cores
    Benstead, J
    Lloyd, D
    MICROBIAL ECOLOGY, 1996, 31 (01) : 57 - 66
  • [38] Temporal variability of soil-atmospheric CO2 and CH4 fluxes from different land uses in mid-subtropical China
    Iqbal, Javed
    Lin, Shan
    Hu, Ronggui
    Feng, Minglei
    ATMOSPHERIC ENVIRONMENT, 2009, 43 (37) : 5865 - 5875
  • [39] Soil N2O, CH4, and CO2 Fluxes in Forest, Grassland, and Tillage/No-Tillage Croplands in French Guiana (Amazonia)
    Petitjean, Caroline
    Le Gall, Cecile
    Pontet, Celia
    Fujisaki, Kenji
    Garric, Bernard
    Horth, Jean-Claude
    Henault, Catherine
    Perrin, Anne-Sophie
    SOIL SYSTEMS, 2019, 3 (02) : 1 - 20
  • [40] Ant mounds alter spatial and temporal patterns of CO2, CH4 and N2O emissions from a marsh soil
    Wu, Haitao
    Lu, Xianguo
    Wu, Donghui
    Song, Lihong
    Yan, Xiumin
    Liu, Jing
    SOIL BIOLOGY & BIOCHEMISTRY, 2013, 57 : 884 - 891