Linkage disequilibrium based genotype calling from low-coverage shotgun sequencing reads

被引:10
|
作者
Duitama, Jorge [1 ]
Kennedy, Justin [1 ]
Dinakar, Sanjiv [2 ]
Hernandez, Yoezen [3 ]
Wu, Yufeng [1 ]
Mandoiu, Ion I. [1 ]
机构
[1] Univ Connecticut, Dept Comp Sci & Engn, Unit 2155, Storrs, CT 06269 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] CUNY Hunter Coll, Dept Comp Sci, New York, NY 10021 USA
来源
BMC BIOINFORMATICS | 2011年 / 12卷
基金
美国国家科学基金会;
关键词
HIDDEN MARKOV MODEL; STRUCTURAL VARIATION; GENOME; ASSOCIATION; IMPUTATION;
D O I
10.1186/1471-2105-12-S1-S53
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Recent technology advances have enabled sequencing of individual genomes, promising to revolutionize biomedical research. However, deep sequencing remains more expensive than microarrays for performing whole-genome SNP genotyping. Results: In this paper we introduce a new multi-locus statistical model and computationally efficient genotype calling algorithms that integrate shotgun sequencing data with linkage disequilibrium (LD) information extracted from reference population panels such as Hapmap or the 1000 genomes project. Experiments on publicly available 454, Illumina, and ABI SOLiD sequencing datasets suggest that integration of LD information results in genotype calling accuracy comparable to that of microarray platforms from sequencing data of low-coverage. A software package implementing our algorithm, released under the GNU General Public License, is available at http://dna.engr.uconn.edu/software/GeneSeq/. Conclusions: Integration of LD information leads to significant improvements in genotype calling accuracy compared to prior LD-oblivious methods, rendering low-coverage sequencing as a viable alternative to microarrays for conducting large-scale genome-wide association studies.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates
    Xavier Bailly
    Elisa Giuntini
    M Connor Sexton
    Ryan PJ Lower
    Peter W Harrison
    Nitin Kumar
    J Peter W Young
    The ISME Journal, 2011, 5 : 1722 - 1734
  • [32] Estimating microhaplotype allele frequencies from low-coverage or pooled sequencing data
    Thomas A. Delomas
    Stuart C. Willis
    BMC Bioinformatics, 24
  • [33] Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates
    Bailly, Xavier
    Giuntini, Elisa
    Sexton, M. Connor
    Lower, Ryan P. J.
    Harrison, Peter W.
    Kumar, Nitin
    Young, J. Peter W.
    ISME JOURNAL, 2011, 5 (11): : 1722 - 1734
  • [34] Estimating microhaplotype allele frequencies from low-coverage or pooled sequencing data
    Delomas, Thomas A.
    Willis, Stuart C.
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [35] Characterizing Bias in Population Genetic Inferences from Low-Coverage Sequencing Data
    Han, Eunjung
    Sinsheimer, Janet S.
    Novembre, John
    MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (03) : 723 - 735
  • [36] Modeling linkage disequilibrium in DNA sequence data for improved polymorphism discovery and genotype calling
    Scheet, P.
    GENETIC EPIDEMIOLOGY, 2008, 32 (07) : 673 - 673
  • [37] Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold
    Menelaou, Androniki
    Marchini, Jonathan
    BIOINFORMATICS, 2013, 29 (01) : 84 - 91
  • [38] NucAE: Autoencoder-based enhancement of nucleosome occupancy signals from low-coverage cfDNA sequencing
    Balazs, Zsolt
    Radig, Jean
    Wolford, Noah
    Schurch, Manuel
    Krauthammer, Michael
    CLINICAL CANCER RESEARCH, 2024, 30 (21)
  • [40] Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize
    Chunhui Li
    Yongxiang Li
    Peter J. Bradbury
    Xun Wu
    Yunsu Shi
    Yanchun Song
    Dengfeng Zhang
    Eli Rodgers-Melnick
    Edward S. Buckler
    Zhiwu Zhang
    Yu Li
    Tianyu Wang
    BMC Biology, 13