Ethyl phosphoric acid grafted amino-modified polybenzimidazole with improved long-term stability for high-temperature proton exchange membrane applications

被引:52
|
作者
Wang, Di [1 ]
Wang, Shuang [1 ,2 ,3 ]
Tian, Xue [1 ]
Li, Jinsheng [1 ]
Liu, Fengxiang [1 ]
Wang, Xu [1 ]
Chen, Hao [1 ]
Mao, Tiejun [1 ]
Liu, Geng [1 ]
机构
[1] Changchun Univ Technol, Coll Chem Engn, Changchun 130012, Peoples R China
[2] Changchun Univ Technol, Adv Inst Mat Sci, Changchun 130012, Peoples R China
[3] Harvard Univ, Dept Phys, Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
关键词
Amino-modified polybenzimidazole; Ethyl phosphoric acid; Graft; Phosphoric acid doping; Long-term stability; POLY(ARYLENE ETHER SULFONE)S; CROSS-LINKED MEMBRANES; FUEL-CELL APPLICATIONS; SULFONATED POLYBENZIMIDAZOLE; IONIC LIQUID; CONDUCTIVITY; CATIONS; PEMFC; PBI;
D O I
10.1016/j.ijhydene.2019.11.219
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of membranes based on amino-modified polybenzimidazole with grafted ethyl phosphonic acid have been successfully prepared. Firstly, the amino-modified polybenzimidazole (PBI-NH2-X) was synthesized, then the ethyl phosphoric acid (EPA) were grafted on to PBI-NH2-X to obtained amino-modified polybenzimidazoles with grafted ethyl phosphonic acid groups (PBI-NH2-EPA-X). EPA is introduced into the matrix to improve the H3PO4 doping level and proton conductivity of the membranes. The obtained membranes display good dimensional and thermal stability. Long-term stability of the grafted membranes is much better than the pristine PBI membranes. Moreover, PBI-NH2-EPA-15 shows a proton conductivity of 0.062 S cm(-1) at 170 degrees C, which is 342% higher than that of PBI. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3176 / 3185
页数:10
相关论文
共 50 条
  • [21] Protic ionic liquid-grafted polybenzimidazole as proton conducting catalyst binder for high-temperature proton exchange membrane fuel cells
    Guo, Jingjing
    Wang, Ailian
    Ji, Wenxi
    Zhang, Taoyi
    Tang, Haolin
    Zhang, Haining
    POLYMER TESTING, 2021, 96
  • [22] Preparation and Characterization of Phosphoric Acid Doped Polyacrylamide/β-Cyclodextrin High-Temperature Proton Exchange Membrane
    Chen, Xiaoling
    Wang, Tian
    Shi, Caixin
    Wang, Guanhua
    Zhao, Yansheng
    Liu, Yongmei
    Zhang, Ding
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2022, 223 (11)
  • [23] Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells
    Xu, Zhongming
    Chen, Nanjie
    Huang, Sheng
    Wang, Shuanjin
    Han, Dongmei
    Xiao, Min
    Meng, Yuezhong
    MOLECULES, 2024, 29 (18):
  • [24] Polyethersulfone/polyvinylpyrrolidone/boron nitride composite membranes for high proton conductivity and long-term stability high-temperature proton exchange membrane fuel cells
    Lv, Bo
    Yin, Hang
    Huang, Ziyi
    Geng, Kang
    Qin, Xiaoping
    Song, Wei
    Shao, Zhigang
    JOURNAL OF MEMBRANE SCIENCE, 2022, 653
  • [25] Polybenzimidazole-Based Semi-Interpenetrating Proton Exchange Membrane with Enhanced Stability and Excellent Performance for High-Temperature Proton Exchange Membrane Fuel Cells
    Jiang, Junqiao
    Jiang, Xunyuan
    Xiao, Min
    Han, Dongmei
    Wang, Shuanjin
    Meng, Yuezhong
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 13316 - 13326
  • [26] Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications
    Wang, Kaili
    Yang, Li
    Wei, Wenxuan
    Zhang, Lin
    Chang, Guanjun
    JOURNAL OF MEMBRANE SCIENCE, 2018, 549 : 23 - 27
  • [27] Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid
    Kwon, Yungjung
    Kim, Tae Young
    Yoo, Duck Young
    Hong, Suk-Gi
    Park, Jung Ock
    JOURNAL OF POWER SOURCES, 2009, 188 (02) : 463 - 467
  • [28] Phosphoric acid-doped polybenzimidazole with a leaf-like three-layer porous structure as a high-temperature proton exchange membrane for fuel cells
    Wang, Peng
    Peng, Jinwu
    Yin, Bibo
    Fu, Xianzhu
    Wang, Lei
    Luo, Jing-Li
    Peng, Xiaojun
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (46) : 26345 - 26353
  • [29] Fabrication of an amino-modified MWCNTs grafted with chlorosulfonated PMIA nanofibrous membrane via electrospinning for efficient high-temperature dust filtration
    Tian, Xinjiao
    Huang, Yixiang
    Lu, Yajing
    Li, Zhenming
    Liu, Lifen
    Wang, Liang
    Sun, Li
    Gu, Liding
    Liu, Jingxian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 336
  • [30] Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells
    He, Donglin
    Liu, Guoliang
    Wang, Ailian
    Ji, Wenxi
    Wu, Jianing
    Tang, Haolin
    Lin, Weiran
    Zhang, Taoyi
    Zhang, Haining
    JOURNAL OF MEMBRANE SCIENCE, 2022, 650