Personality first in emotion: a deep neural network based on electroencephalogram channel attention for cross-subject emotion recognition

被引:8
|
作者
Tian, Zhihang [1 ,2 ]
Huang, Dongmin [1 ,2 ]
Zhou, Sijin [1 ,2 ]
Zhao, Zhidan [1 ,2 ]
Jiang, Dazhi [1 ,2 ]
机构
[1] Shantou Univ, Sch Engn, Dept Comp Sci, Shantou 515063, Peoples R China
[2] Shantou Univ, Key Lab Intelligent Mfg Technol, Minist Educ, Shantou 515063, Peoples R China
来源
ROYAL SOCIETY OPEN SCIENCE | 2021年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
cross subject; electroencephalogram emotion recognition; personality first; deep neural network; INDIVIDUAL-DIFFERENCES;
D O I
10.1098/rsos.201976
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, more and more researchers have focused on emotion recognition methods based on electroencephalogram (EEG) signals. However, most studies only consider the spatio-temporal characteristics of EEG and the modelling based on this feature, without considering personality factors, let alone studying the potential correlation between different subjects. Considering the particularity of emotions, different individuals may have different subjective responses to the same physical stimulus. Therefore, emotion recognition methods based on EEG signals should tend to be personalized. This paper models the personalized EEG emotion recognition from the macro and micro levels. At the macro level, we use personality characteristics to classify the individuals' personalities from the perspective of 'birds of a feather flock together'. At the micro level, we employ deep learning models to extract the spatio-temporal feature information of EEG. To evaluate the effectiveness of our method, we conduct an EEG emotion recognition experiment on the ASCERTAIN dataset. Our experimental results demonstrate that the recognition accuracy of our proposed method is 72.4% and 75.9% on valence and arousal, respectively, which is 10.2% and 9.1% higher than that of no consideration of personalization.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] VAE-CapsNet: A common emotion information extractor for cross-subject emotion recognition
    Chen, Huayu
    Li, Junxiang
    He, Huanhuan
    Sun, Shuting
    Zhu, Jing
    Li, Xiaowei
    Hu, Bin
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [22] Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
    Li, Jinpeng
    Qiu, Shuang
    Shen, Yuan-Yuan
    Liu, Cheng-Lin
    He, Huiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3281 - 3293
  • [23] Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features†
    Jin, Longbin
    Kim, Eun Yi
    SENSORS, 2020, 20 (23) : 1 - 18
  • [24] Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training
    Alameer, Hawraa Razzaq Abed
    Salehpour, Pedram
    Hadi Aghdasi, Seyyed
    Feizi-Derakhshi, Mohammad-Reza
    IEEE ACCESS, 2024, 12 : 130241 - 130252
  • [25] Cross-subject emotion EEG signal recognition based on source microstate analysis
    Zhang, Lei
    Xiao, Di
    Guo, Xiaojing
    Li, Fan
    Liang, Wen
    Zhou, Bangyan
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [26] Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
    Zhang, Hanzhong
    Zuo, Tienyu
    Chen, Zhiyang
    Wang, Xin
    Sun, Poly Z. H.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 3872 - 3881
  • [27] Cross-subject emotion recognition with contrastive learning based on EEG signal correlations
    Hu, Mengting
    Xu, Dan
    He, Kangjian
    Zhao, Kunyuan
    Zhang, Hao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [28] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [29] Band-Level Adaptive Fusion Network for Cross-Subject EEG Emotion Recognition
    Wang, Yilin
    Zhang, Li
    Zhang, Yan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [30] Domain Adversarial Neural Network with Reliable Pseudo-labels Iteration for cross-subject EEG emotion recognition
    Ju, Xiangyu
    Su, Jianpo
    Dai, Sheng
    Wu, Xu
    Li, Ming
    Hu, Dewen
    KNOWLEDGE-BASED SYSTEMS, 2025, 316