Space complexity of estimation of distribution algorithms

被引:19
|
作者
Gao, Y [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
关键词
estimation of distribution algorithms; space complexity; additive fitness functions; graphical models and bayesian networks; treewidth;
D O I
10.1162/1063656053583423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the space complexity of the Estimation of Distribution Algorithms (EDAs), a class of sampling-based variants of the genetic algorithm. By analyzing the nature of EDAs, we identify criteria that characterize the space complexity of two typical implementation schemes of EDAs, the factorized distribution algorithm and Bayesian network-based algorithms. Using random additive functions as the prototype, we prove that the space complexity of the factorized distribution algorithm and Bayesian network-based algorithms is exponential in the problem size even if the optimization problem has a very sparse interaction structure.
引用
收藏
页码:125 / 143
页数:19
相关论文
共 50 条
  • [21] ML Estimation Using Low Complexity Metaheuristic Algorithms
    Ijyas, Thafasal V. P.
    Sameer, S. M.
    2014 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2014,
  • [22] Nonlinear Parameter Estimation via Estimation of Distribution Algorithms
    Li, Jun
    Jiang, Yong
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 213 - 217
  • [23] Dictionary based estimation of distribution algorithms
    Sangkavichitr, Chalermsub
    Chongstitvattana, Prabhas
    2007 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, VOLS 1-3, 2007, : 364 - 369
  • [24] A Study on Multimemetic Estimation of Distribution Algorithms
    Nogueras, Rafael
    Cotta, Carlos
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 322 - 331
  • [25] Customized Selection in Estimation of Distribution Algorithms
    Santana, Roberto
    Mendiburu, Alexander
    Lozano, Jose A.
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 94 - 105
  • [26] Drift and scaling in estimation of distribution algorithms
    Shapiro, JL
    EVOLUTIONARY COMPUTATION, 2005, 13 (01) : 99 - 123
  • [27] Unbiasedness of estimation-of-distribution algorithms
    Friedrich, Tobias
    Koetzing, Timo
    Krejca, Martin S.
    THEORETICAL COMPUTER SCIENCE, 2019, 785 : 46 - 59
  • [28] Bayesian inference in estimation of distribution algorithms
    Gallagher, Marcus
    Wood, Ian
    Keith, Jonathan
    Sofronov, George
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 127 - +
  • [29] On the convergence of a class of estimation of distribution algorithms
    Zhang, QF
    Mühlenbein, H
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (02) : 127 - 136
  • [30] A study on multimemetic estimation of distribution algorithms
    Nogueras, Rafael, 1600, Springer Verlag (8672):