Error Analysis of Generalized Nystrom Kernel Regression

被引:0
|
作者
Chen, Hong [1 ]
Xia, Haifeng [2 ]
Cai, Weidong [3 ]
Huang, Heng [1 ]
机构
[1] Univ Texas Arlington, Comp Sci & Engn, Arlington, TX 76019 USA
[2] Huazhong Agr Univ, Math & Stat, Wuhan 430070, Peoples R China
[3] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016) | 2016年 / 29卷
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
APPROXIMATION; MATRIX;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nystrom method has been successfully used to improve the computational efficiency of kernel ridge regression (KRR). Recently, theoretical analysis of Nystrom KRR, including generalization bound and convergence rate, has been established based on reproducing kernel Hilbert space (RKHS) associated with the symmetric positive semi-definite kernel. However, in real world applications, RKHS is not always optimal and kernel function is not necessary to be symmetric or positive semi-definite. In this paper, we consider the generalized Nystrom kernel regression (GNKR) with l(2) coefficient regularization, where the kernel just requires the continuity and boundedness. Error analysis is provided to characterize its generalization performance and the column norm sampling strategy is introduced to construct the refined hypothesis space. In particular, the fast learning rate with polynomial decay is reached for the GNKR. Experimental analysis demonstrates the satisfactory performance of GNKR with the column norm sampling.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On Expected Error of Randomized Nystrom Kernel Regression
    Trokicic, Aleksandar
    Todorovic, Branimir
    FILOMAT, 2020, 34 (11) : 3871 - 3884
  • [2] Randomized Nystrom Features for Fast Regression: An Error Analysis
    Trokicic, Aleksandar
    Todorovic, Branimir
    ALGEBRAIC INFORMATICS, CAI 2019, 2019, 11545 : 249 - 257
  • [3] Nystrom Kernel Algorithm Under Generalized Maximum Correntropy Criterion
    Zhang, Tao
    Wang, Shiyuan
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 1535 - 1539
  • [4] Non-uniform Nystrom approximation for sparse kernel regression: Theoretical analysis and experimental evaluation
    Zhang, Qian
    Shi, Wei
    Hoi, Steven
    Xu, Zenglin
    NEUROCOMPUTING, 2022, 501 : 410 - 419
  • [5] Semiparametric regression with kernel error model
    Yuan, Ao
    de Gooijer, Jan G.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (04) : 841 - 869
  • [6] Generalized Bayesian kernel machine regression
    Mou, Xichen
    Zhang, Hongmei
    Arshad, S. Hasan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2025, 34 (02) : 243 - 257
  • [7] Consistency and error analysis of Prior-Knowledge-Based Kernel Regression
    Sun, Z.
    Zhang, Z.
    Wang, H.
    NEUROCOMPUTING, 2011, 74 (17) : 3476 - 3485
  • [8] Deterministic error analysis of kernel regularized regression for spherical scattered data
    Li, Wan
    Niu, Yeli
    Sheng, Baohuai
    Ye, Peixin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2025,
  • [9] Error analysis of regularized least-square regression with Fredholm kernel
    Tao, Yanfang
    Yuan, Peipei
    Song, Biqin
    NEUROCOMPUTING, 2017, 249 : 237 - 244
  • [10] Fast Kernel Independent Component Analysis with Nystrom Method
    Wang, He
    Xu, Weixia
    Guan, Naiyang
    Yang, Canqun
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 1016 - 1020