Symmetries of quantum graphs and the inverse scattering problem

被引:52
|
作者
Boman, J [1 ]
Kurasov, P
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[2] Lund Inst Technol, Dept Math, S-22100 Lund, Sweden
[3] St Petersburg Univ, Dept Phys, St Petersburg 198904, Russia
关键词
quantum graph; schrodinger operator; inverse scattering problem;
D O I
10.1016/j.aam.2004.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger equation on a graph together with a set of self-adjoint boundary conditions at the vertices determine a quantum graph. If the graph has one or more infinite edges one can associate a scattering matrix to the quantum graph. It is proved that if such a graph has internal symmetries then the boundary conditions, and hence the self-adjoint operator describing the quantum system, in general cannot be reconstructed from the scattering matrix. In addition it is shown that if the Schrodinger operator possesses internal symmetry then there exists a different quantum graph associated with the same scattering matrix. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 70
页数:13
相关论文
共 50 条
  • [31] AN INVERSE PROBLEM OF SCATTERING
    ABLEKOV, VK
    BABAEV, IN
    SYRYKH, IP
    FROLOV, AV
    DOKLADY AKADEMII NAUK SSSR, 1985, 280 (01): : 107 - 109
  • [32] Solution group representations as quantum symmetries of graphs
    Roberson, David E.
    Schmidt, Simon
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3379 - 3410
  • [33] Inverse spectral problem for quantum graphs (vol 38, pg 4901, 2005)
    Kurasov, P
    Nowaczyk, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (04): : 993 - 993
  • [34] Attractors and symmetries of vector fields:: The inverse problem
    Gonzalez-Gascon, F.
    Peralta-Salas, D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 789 - 807
  • [35] N=2 SUPERSYMMETRIC QUANTUM-MECHANICS AND THE INVERSE SCATTERING PROBLEM
    BEREZOVOI, VP
    PASHNEV, AI
    THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 74 (03) : 264 - 268
  • [36] A transmutation operator method for solving the inverse quantum scattering problem.
    Kravchenko, Vladislav V.
    Shishkina, Elina L.
    Torba, Sergii M.
    INVERSE PROBLEMS, 2020, 36 (12)
  • [37] QUANTUM MECHANICAL INVERSE SCATTERING PROBLEM AT FIXED ENERGY: A CONSTRUCTIVE METHOD
    Palmai, Tamas
    Apagyi, Barnabas
    METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (01) : 93 - 104
  • [38] The scattering symmetries of tetrahedral quantum structures
    W. A. Furman
    F. J. Estrella
    A. D. Barr
    L. E. Reichl
    The European Physical Journal D, 2022, 76
  • [39] The scattering symmetries of tetrahedral quantum structures
    Furman, W. A.
    Estrella, F. J.
    Barr, A. D.
    Reichl, L. E.
    EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (05):
  • [40] A Practical Method for Solving the Inverse Quantum Scattering Problem on a Half Line
    Karapetyants, A. N.
    Khmelnytskaya, K., V
    Kravchenko, V. V.
    QUANTUM FEST 2019 INTERNATIONAL CONFERENCE ON QUANTUM PHENOMENA, QUANTUM CONTROL AND QUANTUM OPTICS, 2020, 1540