On the interior regularity of weak solutions to the non-stationary Stokes system

被引:1
|
作者
Naumann, Joachim [1 ]
Wolf, Joerg [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
non-stationary Stokes system; interior regularity;
D O I
10.1007/s10898-007-9197-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we prove that any weak solution to the non-stationary Stokes system in 3D with right hand side -div f satisfying (1.4) below, belongs to C( ]0, T[; C-alpha (Omega)). The proof is based on Campanato-type inequalities and the existence of a local pressure introduced in Wolf [13].
引用
收藏
页码:277 / 288
页数:12
相关论文
共 50 条
  • [41] Mild regularity of weak solutions to the Navier - Stokes equations
    Herbst, Ira
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 254
  • [42] Interior regularity criteria in weak spaces for the Navier-Stokes equations
    Hyunseok Kim
    Hideo Kozono
    manuscripta mathematica, 2004, 115 : 85 - 100
  • [43] SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM
    GIGA, Y
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) : 186 - 212
  • [44] Partial Regularity of Weak Solutions of the Stationary 3D-Boussinesq System
    T. N. Shilkin
    Journal of Mathematical Sciences, 2004, 123 (6) : 4668 - 4677
  • [45] On partial regularity of suitable weak solutions to the stationary fractional Navier–Stokes equations in dimension four and five
    Xiao Li Guo
    Yue Yang Men
    Acta Mathematica Sinica, English Series, 2017, 33 : 1632 - 1646
  • [46] Interior Regularity for Solutions to the Modified Navier-Stokes Equations
    Seregin, G. A.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (03) : 235 - 281
  • [47] Some strange numerical solutions of the non-stationary Navier-Stokes equations in pipes
    Rummler, B
    MATHEMATICS AND MATHEMATICS EDUCATION, 2002, : 264 - 280
  • [48] Weak signal extraction in non-stationary channel with weak measurement
    Qi Song
    Hongjing Li
    Jingzheng Huang
    Peng Huang
    Xiaorui Tan
    Yu Tao
    Chunhui Shi
    Guihua Zeng
    Communications Physics, 6
  • [49] Weak signal extraction in non-stationary channel with weak measurement
    Song, Qi
    Li, Hongjing
    Huang, Jingzheng
    Huang, Peng
    Tan, Xiaorui
    Tao, Yu
    Shi, Chunhui
    Zeng, Guihua
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [50] Weak solutions for the stationary anisotropic and nonlocal compressible Navier-Stokes system
    Bresch, D.
    Burtea, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 146 : 183 - 217