Functional calculus for elliptic operators on noncommutative tori, I

被引:4
|
作者
Lee, Gihyun [1 ]
Ponge, Raphael [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
[2] Sichuan Univ, Sch Math, Chengdu, Peoples R China
关键词
C-STAR-ALGEBRAS; CROSSED-PRODUCTS; PSEUDODIFFERENTIAL CALCULUS; MODULAR CURVATURE; THEOREM;
D O I
10.1007/s11868-020-00337-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a parametric pseudodifferential calculus on noncommutative n-tori which is a natural nest for resolvents of elliptic pseudodifferential operators. Unlike in some previous approaches to parametric pseudodifferential calculi, our parametric pseudodifferential calculus contains resolvents of elliptic pseudodifferential operators that need not be differential operators. As an application we show that complex powers of positive elliptic pseudodifferential operators on noncommutative n-tori are pseudodifferential operators. This confirms a claim of Fathi-Ghorbanpour-Khalkhali.
引用
收藏
页码:935 / 1004
页数:70
相关论文
共 50 条
  • [31] Quantum dynamical semigroups generated by noncommutative unbounded elliptic operators
    Bahn, Changsoo
    Ko, Chul Ki
    Park, Yong Moon
    REVIEWS IN MATHEMATICAL PHYSICS, 2006, 18 (06) : 595 - 617
  • [32] Feynman-Kac representation of some noncommutative elliptic operators
    Lindsay, JM
    Sinha, KB
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (02) : 400 - 419
  • [33] Relativistic differential-difference momentum operators and noncommutative differential calculus
    R. M. Mir-Kasimov
    Physics of Atomic Nuclei, 2013, 76 : 1181 - 1187
  • [34] Relativistic differential-difference momentum operators and noncommutative differential calculus
    Mir-Kasimov, R. M.
    PHYSICS OF ATOMIC NUCLEI, 2013, 76 (09) : 1181 - 1187
  • [35] A note on the functional calculus for sectorial operators
    Uiterdijk, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (01): : 131 - 143
  • [36] Wavelet transform of operators and functional calculus
    Kisil, VV
    COMPLEX METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1999, 6 : 319 - 331
  • [37] Analytic functional calculus for two operators
    Kurbatov, V. G.
    Kurbatova, I. V.
    Oreshina, M. N.
    ADVANCES IN OPERATOR THEORY, 2021, 6 (04)
  • [38] FUNCTIONAL CALCULUS FOR SUBNORMAL OPERATORS II
    CONWAY, JB
    OLIN, RF
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 10 (184) : R3 - 61
  • [39] A new functional calculus for noncommuting operators
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) : 2255 - 2274
  • [40] Analytic functional calculus for two operators
    V. G. Kurbatov
    I. V. Kurbatova
    M. N. Oreshina
    Advances in Operator Theory, 2021, 6