A Fully Automated Deep Learning Pipeline for Multi-Vertebral Level Quantification and Characterization of Muscle and Adipose Tissue on Chest CT Scans

被引:26
|
作者
Bridge, Christopher P. [1 ,2 ]
Best, Till D. [3 ,5 ,6 ,7 ,8 ]
Wrobel, Maria M. [3 ,9 ]
Marquardt, J. Peter [3 ]
Magudia, Kirti [10 ]
Javidan, Cylen [11 ]
Chung, Jonathan H. [12 ,13 ]
Kalpathy-Cramer, Jayashree [1 ]
Andriole, Katherine P. [1 ,2 ,4 ]
Fintelmann, Florian J. [3 ]
机构
[1] Massachusetts Gen Hosp & Brigham & Womens Hosp Ct, 55 Fruit St, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Div Thorac Imaging & Intervent, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[4] Brigham & Womens Hosp, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[5] Charite Univ Med Berlin, Berlin, Germany
[6] Free Univ Berlin, Berlin, Germany
[7] Humboldt Univ, Dept Radiol, Berlin, Germany
[8] Berlin Inst Hlth, Dept Radiol, Berlin, Germany
[9] Ludwig Maximilians Univ Munchen, Dept Radiol, Munich, Germany
[10] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[11] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO USA
[12] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[13] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
SKELETAL-MUSCLE;
D O I
10.1148/ryai.210080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Body composition on chest CT scans encompasses a set of important imaging biomarkers. This study developed and validated a fully automated analysis pipeline for multi-vertebral level assessment of muscle and adipose tissue on routine chest CT scans. This study retrospectively trained two convolutional neural networks on 629 chest CT scans from 629 patients (55% women; mean age, 67 years 6 10 [standard deviation]) obtained between 2014 and 2017 prior to lobectomy for primary lung cancer at three institutions. A slice-selection network was developed to identify an axial image at the level of the fifth, eighth, and 10th thoracic vertebral bodies. A segmentation network (U-Net) was trained to segment muscle and adipose tissue on an axial image. Radiologist-guided manual-level selection and segmentation generated ground truth. The authors then assessed the predictive performance of their approach for cross-sectional area (CSA) (in centimeters squared) and attenuation (in Hounsfield units) on an independent test set. For the pipeline, median absolute error and intraclass correlation coefficients for both tissues were 3.6% (interquartile range, 1.3%-7.0%) and 0.959-0.998 for the CSA and 1.0 HU (interquartile range, 0.0-2.0 HU) and 0.95-0.99 for median attenuation. This study demonstrates accurate and reliable fully automated multi-vertebral level quantification and characterization of muscle and adipose tissue on routine chest CT scans. (C)RSNA, 2022
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain
    Kemnitz, Jana
    Baumgartner, Christian F.
    Eckstein, Felix
    Chaudhari, Akshay
    Ruhdorfer, Anja
    Wirth, Wolfgang
    Eder, Sebastian K.
    Konukoglu, Ender
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2020, 33 (04) : 483 - 493
  • [42] Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT
    Leung, Kevin H.
    Rowe, Steven P.
    Sadaghiani, Moe S.
    Leal, Jeffrey P.
    Mena, Esther
    Choyke, Peter L.
    Du, Yong
    Pomper, Martin G.
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65 (04) : 643 - 650
  • [43] Impact of fully automatic deep-learning-based segmentation in tumor quantification of [18F]FDG PET/CT scans
    Constantino, Claudia
    Oliveira, Francisco
    Castanheira, Joana
    Costa, Durval
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [44] Deep-learning characterization and quantification of COVID-19 pneumonia lesions from chest CT images
    Bermejo-Pelaez, D.
    Estepar, R. San Jose
    Fernandez-Velilla, M.
    Miras, C. Palacios
    Madueno, G. Gallardo
    Benegas, M.
    Oroz, M. A. Luengo
    Sellares, J.
    Sanchez, M.
    Peces Barba, G.
    Seijo, L. M.
    Ledesma-Carbayo, M. J.
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [45] A Multi-centric Evaluation of Deep Learning Models for Segmentation of COVID-19 Lung Lesions on Chest CT Scans
    Sotoudeh-Paima, Saman
    Hasanzadeh, Navid
    Bashirgonbadi, Ali
    Aref, Amin
    Naghibi, Mehran
    Zoorpaikar, Mostafa
    Arian, Arvin
    Gity, Masoumeh
    Soltanian-Zadeh, Hamid
    IRANIAN JOURNAL OF RADIOLOGY, 2022, 19 (04)
  • [46] Deep Learning-Based Approach for the Automatic Quantification of Epicardial Adipose Tissue from Non-Contrast CT
    Qu, Junda
    Chang, Yuting
    Sun, Liwei
    Li, Yutang
    Si, Qian
    Yang, Min-Fu
    Li, Chunlin
    Zhang, Xu
    COGNITIVE COMPUTATION, 2022, 14 (04) : 1392 - 1404
  • [47] External validation of a deep learning model for automatic segmentation of skeletal muscle and adipose tissue on abdominal CT images
    van Dijk, David P. J.
    Volmer, Leroy F.
    Brecheisen, Ralph
    Martens, Bibi
    Dolan, Ross D.
    Bryce, Adam S.
    Chang, David K.
    McMillan, Donald C.
    Stoot, Jan H. M. B.
    West, Malcolm A.
    Rensen, Sander S.
    Dekker, Andre
    Wee, Leonard
    Damink, Steven W. M. Olde
    BRITISH JOURNAL OF RADIOLOGY, 2024, 97 (1164): : 2015 - 2023
  • [48] Deep Learning-Based Approach for the Automatic Quantification of Epicardial Adipose Tissue from Non-Contrast CT
    Junda Qu
    Yuting Chang
    Liwei Sun
    Yutang Li
    Qian Si
    Min-Fu Yang
    Chunlin Li
    Xu Zhang
    Cognitive Computation, 2022, 14 : 1392 - 1404
  • [49] Deep learning enables the fully automated quantification of high-resolution cardiac CT images: human in loop for model development
    Kazaj, P. Mohammadi
    Baj, G.
    Schutze, J.
    Stark, A.
    Valenzuela, W.
    Giannopoulos, A. A.
    Buechel, R. Ralf
    Graeni, C.
    Shiri, I
    EUROPEAN HEART JOURNAL, 2024, 45
  • [50] Deep Learning-Based Fully Automated Segmentation of Regional Muscle Volume and Spatial Intermuscular Fat Using CT
    Zhang, Rui
    He, Aiting
    Xia, Wei
    Su, Yongbin
    Jian, Junming
    Liu, Yandong
    Guo, Zhe
    Shi, Wei
    Zhang, Zhenguang
    He, Bo
    Cheng, Xiaoguang
    Gao, Xin
    Liu, Yajun
    Wang, Ling
    ACADEMIC RADIOLOGY, 2023, 30 (10) : 2280 - 2289