A Fully Automated Deep Learning Pipeline for Multi-Vertebral Level Quantification and Characterization of Muscle and Adipose Tissue on Chest CT Scans

被引:26
|
作者
Bridge, Christopher P. [1 ,2 ]
Best, Till D. [3 ,5 ,6 ,7 ,8 ]
Wrobel, Maria M. [3 ,9 ]
Marquardt, J. Peter [3 ]
Magudia, Kirti [10 ]
Javidan, Cylen [11 ]
Chung, Jonathan H. [12 ,13 ]
Kalpathy-Cramer, Jayashree [1 ]
Andriole, Katherine P. [1 ,2 ,4 ]
Fintelmann, Florian J. [3 ]
机构
[1] Massachusetts Gen Hosp & Brigham & Womens Hosp Ct, 55 Fruit St, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Div Thorac Imaging & Intervent, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[4] Brigham & Womens Hosp, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[5] Charite Univ Med Berlin, Berlin, Germany
[6] Free Univ Berlin, Berlin, Germany
[7] Humboldt Univ, Dept Radiol, Berlin, Germany
[8] Berlin Inst Hlth, Dept Radiol, Berlin, Germany
[9] Ludwig Maximilians Univ Munchen, Dept Radiol, Munich, Germany
[10] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[11] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO USA
[12] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[13] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
SKELETAL-MUSCLE;
D O I
10.1148/ryai.210080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Body composition on chest CT scans encompasses a set of important imaging biomarkers. This study developed and validated a fully automated analysis pipeline for multi-vertebral level assessment of muscle and adipose tissue on routine chest CT scans. This study retrospectively trained two convolutional neural networks on 629 chest CT scans from 629 patients (55% women; mean age, 67 years 6 10 [standard deviation]) obtained between 2014 and 2017 prior to lobectomy for primary lung cancer at three institutions. A slice-selection network was developed to identify an axial image at the level of the fifth, eighth, and 10th thoracic vertebral bodies. A segmentation network (U-Net) was trained to segment muscle and adipose tissue on an axial image. Radiologist-guided manual-level selection and segmentation generated ground truth. The authors then assessed the predictive performance of their approach for cross-sectional area (CSA) (in centimeters squared) and attenuation (in Hounsfield units) on an independent test set. For the pipeline, median absolute error and intraclass correlation coefficients for both tissues were 3.6% (interquartile range, 1.3%-7.0%) and 0.959-0.998 for the CSA and 1.0 HU (interquartile range, 0.0-2.0 HU) and 0.95-0.99 for median attenuation. This study demonstrates accurate and reliable fully automated multi-vertebral level quantification and characterization of muscle and adipose tissue on routine chest CT scans. (C)RSNA, 2022
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fully Automated CT Quantification of Epicardial Adipose Tissue by Deep Learning: A Multicenter Study
    Commandeur, Frederic
    Goeller, Markus
    Razipour, Aryabod
    Cadet, Sebastien
    Hell, Michaela M.
    Kwiecinski, Jacek
    Chen, Xi
    Chang, Hyuk-Jae
    Marwan, Mohamed
    Achenbach, Stephan
    Berman, Daniel S.
    Slomka, Piotr J.
    Tamarappoo, Balaji K.
    Dey, Damini
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (06)
  • [2] Automated Assessment of Vertebral Fractures from Chest CT Scans Using Deep Learning
    Nadeem, S.
    Comellas, A. P.
    Guha, I.
    Hoffman, E. A.
    Regan, E. A.
    Saha, P. K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [3] Fully Automated Deep Learning Segmentation and Quantification of Epicardial Adipose Tissue in CT Calcium Score Images
    Hoori, Ammar
    Hu, Tao
    Lee, Juhwan
    Al-Kindi, Sadeer
    Rajagopalan, Sanjay
    Wilson, David
    CIRCULATION RESEARCH, 2022, 131 (12) : E170 - E171
  • [4] FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI
    Estrada, Santiago
    Lu, Ran
    Conjeti, Sailesh
    Orozco-Ruiz, Ximena
    Panos-Willuhn, Joana
    Breteler, Monique M. B.
    Reuter, Martin
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (04) : 1471 - 1483
  • [5] Automated chest CT three-dimensional quantification of body composition: adipose tissue and paravertebral muscle
    Hata, Akinori
    Muraguchi, Yohei
    Nakatsugawa, Minoru
    Wang, Xinan
    Song, Jiyeon
    Wada, Noriaki
    Hino, Takuya
    Aoyagi, Kota
    Kawagishi, Masami
    Negishi, Takuo
    Valtchinov, Vladimir I.
    Nishino, Mizuki
    Koga, Akihiro
    Sugihara, Naoki
    Ozaki, Masahiro
    Hunninghake, Gary M.
    Tomiyama, Noriyuki
    Schiebler, Mark L.
    Li, Yi
    Christiani, David C.
    Hatabu, Hiroto
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] AUTOMATED DETECTION OF VERTEBRAL FRACTURES IN ROUTINE CT SCANS OF THE CHEST AND ABDOMEN: EXTERNAL VALIDATION OF A DEEP LEARNING ALGORITHM
    Nicolaes, J.
    Skjodt, M. Kriegbaum
    Libanati, C.
    Smith, C. Dyer
    Olsen, K. Rose
    Cooper, C.
    Abrahamsen, B.
    AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2022, 34 (SUPPL 1) : S188 - S189
  • [7] A fully automated pipeline for the extraction of pectoralis muscle area from chest computed tomography scans
    Genkin, Daniel
    Jenkins, Alex R.
    van Noord, Nikki
    Makimoto, Kalysta
    Collins, Sophie
    Stickland, Michael K.
    Tan, Wan C.
    Bourbeau, Jean
    Jensen, Dennis
    Kirby, Miranda
    ERJ OPEN RESEARCH, 2024, 10 (01)
  • [8] Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans
    Ammar Hoori
    Tao Hu
    Juhwan Lee
    Sadeer Al-Kindi
    Sanjay Rajagopalan
    David L. Wilson
    Scientific Reports, 12
  • [9] Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans
    Hoori, Ammar
    Hu, Tao
    Lee, Juhwan
    Al-Kindi, Sadeer
    Rajagopalan, Sanjay
    Wilson, David L.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Quantification of Epicardial Adipose Tissue Volume and Attenuation for Cardiac CT Scans Using Deep Learning in a Single Multi-Task Framework
    Abdulkareem, Musa
    Brahier, Mark S.
    Zou, Fengwei
    Rauseo, Elisa
    Uchegbu, Ijeoma
    Taylor, Alexandra
    Thomaides, Athanasios
    Bergquist, Peter J.
    Srichai, Monvadi B.
    Lee, Aaron M.
    Vargas, Jose D.
    Petersen, Steffen E.
    REVIEWS IN CARDIOVASCULAR MEDICINE, 2022, 23 (12)