Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy

被引:71
|
作者
Krieger, Teresa G. [1 ,2 ]
Le Blanc, Solange [3 ,4 ,5 ]
Jabs, Julia [2 ]
Ten, Foo Wei [1 ,2 ]
Ishaque, Naveed [1 ]
Jechow, Katharina [1 ,2 ]
Debnath, Olivia [1 ]
Leonhardt, Carl-Stephan [3 ]
Giri, Anamika [2 ]
Eils, Roland [1 ,2 ]
Strobel, Oliver [3 ,5 ,6 ]
Conrad, Christian [1 ,2 ]
机构
[1] Charite Univ Med Berlin, Digital Hlth Ctr, Berlin Inst Hlth BIH, Berlin, Germany
[2] German Canc Res Ctr, Div Theoret Bioinformat, Heidelberg, Germany
[3] Heidelberg Univ Hosp, Dept Gen Surg, European Pancreas Ctr, Heidelberg, Germany
[4] German Canc Res Ctr, Div Mol Oncol Gastrointestinal Tumors, Heidelberg, Germany
[5] Natl Ctr Tumor Dis NCT, Heidelberg, Germany
[6] Med Univ Vienna, Div Visceral Surg, Dept Gen Surg, Vienna, Austria
关键词
PANCREATIC DUCTAL ADENOCARCINOMA; BIOMARKERS; SUBTYPES; CANCER; TUMOR; METASTASES; AUGMENTS; SURVIVAL;
D O I
10.1038/s41467-021-26059-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pancreatic tumors are frequently divided into basal and classical subtypes. Here, the authors use single cell sequencing to investigate organoids derived from pancreatic cancer tissue and find a hierarchy of distinct cell states, and classical and basal cells existing within the same tumor. Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer mortality by 2030. Bulk transcriptomic analyses have distinguished 'classical' from 'basal-like' tumors with more aggressive clinical behavior. We derive PDAC organoids from 18 primary tumors and two matched liver metastases, and show that 'classical' and 'basal-like' cells coexist in individual organoids. By single-cell transcriptome analysis of PDAC organoids and primary PDAC, we identify distinct tumor cell states shared across patients, including a cycling progenitor cell state and a differentiated secretory state. Cell states are connected by a differentiation hierarchy, with 'classical' cells concentrated at the endpoint. In an imaging-based drug screen, expression of 'classical' subtype genes correlates with better drug response. Our results thus uncover a functional hierarchy of PDAC cell states linked to transcriptional tumor subtypes, and support the use of PDAC organoids as a clinically relevant model for in vitro studies of tumor heterogeneity.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Single-cell genomic analysis of patient-derived circulating tumor cells in pancreatic cancer
    Ball, Harrison
    Rupp, Brittany
    Owen, Sarah
    Smith, Kaylee
    Gunchick, Valerie
    Keller, Evan T.
    Sahai, Vaibhav
    Nagrath, Sunitha
    CANCER RESEARCH, 2023, 83 (07)
  • [22] Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids
    Kim, Jong-Hwan
    Mun, Seon Ju
    Kim, Jeong-Hwan
    Son, Myung Jin
    Kim, Seon-Young
    ISCIENCE, 2023, 26 (09)
  • [23] Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia
    Sun, Heng
    Miao, Zhengqiang
    Zhang, Xin
    Chan, Un In
    Su, Sek Man
    Guo, Sen
    Wong, Chris Koon Ho
    Xu, Xiaoling
    Deng, Chu-Xia
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (22) : 8315 - 8329
  • [24] Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells
    Xitiz Chamling
    Alyssa Kallman
    Weixiang Fang
    Cynthia A. Berlinicke
    Joseph L. Mertz
    Prajwal Devkota
    Itzy E. Morales Pantoja
    Matthew D. Smith
    Zhicheng Ji
    Calvin Chang
    Aniruddha Kaushik
    Liben Chen
    Katharine A. Whartenby
    Peter A. Calabresi
    Hai-Quan Mao
    Hongkai Ji
    Tza-Huei Wang
    Donald J. Zack
    Nature Communications, 12
  • [25] Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells
    Chamling, Xitiz
    Kallman, Alyssa
    Fang, Weixiang
    Berlinicke, Cynthia A.
    Mertz, Joseph L.
    Devkota, Prajwal
    Pantoja, Itzy E. Morales
    Smith, Matthew D.
    Ji, Zhicheng
    Chang, Calvin
    Kaushik, Aniruddha
    Chen, Liben
    Whartenby, Katharine A.
    Calabresi, Peter A.
    Mao, Hai-Quan
    Ji, Hongkai
    Wang, Tza-Huei
    Zack, Donald J.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [26] Single-cell analysis reveals metastatic cell heterogeneity in clear cell renal cell carcinoma
    Liu, Kun
    Gao, Rui
    Wu, Hao
    Wang, Zhe
    Han, Guang
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (09) : 4260 - 4274
  • [27] Single-cell transcriptional profiling reveals heterogeneity and developmental trajectories of Ewing sarcoma
    Bo Hong
    Yi Li
    Ran Yang
    ShuYang Dai
    Yong Zhan
    Wen-Bo Zhang
    Rui Dong
    Journal of Cancer Research and Clinical Oncology, 2022, 148 : 3267 - 3280
  • [28] Single-cell transcriptional profiling reveals heterogeneity and developmental trajectories of Ewing sarcoma
    Hong, Bo
    Li, Yi
    Yang, Ran
    Dai, ShuYang
    Zhan, Yong
    Zhang, Wen-Bo
    Dong, Rui
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2022, 148 (12) : 3267 - 3280
  • [29] Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma
    Zheng, Hongping
    Pomyen, Yotsawat
    Hernandez, Maria Olga
    Li, Caiyi
    Livak, Ferenc
    Tang, Wei
    Dang, Hien
    Greten, Tim F.
    Davis, Jeremy L.
    Zhao, Yongmei
    Mehta, Monika
    Levin, Yelena
    Shetty, Jyoti
    Tran, Bao
    Budhu, Anuradha
    Wang, Xin Wei
    HEPATOLOGY, 2018, 68 (01) : 127 - 140
  • [30] Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity
    McKinley, Eliot T.
    Sui, Yunxia
    Al-Kofahi, Yousef
    Millis, Bryan A.
    Tyska, Matthew J.
    Roland, Joseph T.
    Santamaria-Pang, Alberto
    Ohland, Christina L.
    Jobin, Christian
    Franklin, Jeffrey L.
    Lau, Ken S.
    Gerdes, Michael J.
    Coffey, Robert J.
    JCI INSIGHT, 2017, 2 (11)