Integrability and Continuity of Solutions to Fokker-Planck-Kolmogorov Equations

被引:0
|
作者
Bogachev, V. I. [1 ,2 ,3 ]
Shaposhnikov, S. V. [1 ,2 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow, Russia
[2] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[3] St Tikhons Orthodox Humanitarian Univ, Moscow, Russia
关键词
PARABOLIC EQUATIONS; DIFFUSIONS; SPACES;
D O I
10.1134/S1064562417060175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New results concerning the local integrability of any order and continuity of solution densities of Fokker-Planck-Kolmogorov equations with nondifferentiable coefficients are obtained.
引用
收藏
页码:583 / 586
页数:4
相关论文
共 50 条
  • [21] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 26 (02): : 61 - 62
  • [22] Fokker-Planck-Kolmogorov Equations with a Potential Term on a Domain
    Manita, O. A.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (01) : 26 - 29
  • [23] Uniqueness problems for degenerate Fokker-Planck-Kolmogorov equations
    Bogachev V.I.
    Röckner M.
    Shaposhnikov S.V.
    Journal of Mathematical Sciences, 2015, 207 (2) : 147 - 165
  • [25] Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures
    Bogachev, Vladimir, I
    Roeckner, Michael
    Shaposhnikov, Stanislav, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (12) : 3681 - 3713
  • [26] On the uniqueness of integrable and probability solutions to the cauchy problem for the Fokker-Planck-Kolmogorov equations
    S. V. Shaposhnikov
    Doklady Mathematics, 2011, 84
  • [27] Convergence to Stationary Measures in Nonlinear Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 452 - 457
  • [28] Log-Sobolev-type inequalities for solutions to stationary Fokker-Planck-Kolmogorov equations
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (05)
  • [29] On Positive and Probability Solutions to the Stationary Fokker-Planck-Kolmogorov Equation
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 350 - 354
  • [30] Connection between the Fokker-Planck-Kolmogorov and nonlinear Langevin equations
    V. Ya. Fainberg
    Theoretical and Mathematical Physics, 2006, 149 : 1710 - 1725