A Dilated Transformer Network for Time Series Anomaly Detection

被引:3
|
作者
Wu, Bo [1 ]
Yao, Zhenjie [2 ]
Tu, Yanhui [3 ]
Chen, Yixin [4 ]
机构
[1] Southeast Univ, Minist Educ, Purple Mt Labs, Key Lab Comp Network & Informat Integrat, Nanjing, Peoples R China
[2] Chinese Acad Sci, Inst Microelect, Purple Mt Labs, Beijing, Peoples R China
[3] Shandong Future Network Res Inst, Purple Mt Labs, Beijing, Peoples R China
[4] Washington Univ St Louis, Purple Mt Labs, Washington, DC USA
关键词
anomaly detection; Transformer; dilated convolution; time series;
D O I
10.1109/ICTAI56018.2022.00016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised anomaly detection for time series has been an active research area due to its enormous potential for wireless network management. Existing works have made extraordinary progress in time series representation, reconstruction and forecasting. However, long-term temporal patterns prohibit the model from learning reliable dependencies. To this end, we propose a novel approach based on Transformer with dilated convolution for time anomaly detection. Specifically, we provide a dilated convolution module to extract long-term dependence features. Extensive experiments on various public benchmarks demonstrate that our method has achieved the state-of-the-art performance.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 50 条
  • [31] Anomaly Detection on Time-series Logs for Industrial Network
    Chen, Lin
    Kuang, Xiaoyun
    Xu, Aidong
    Suo, Siliang
    Yang, Yiwei
    2020 3RD INTERNATIONAL CONFERENCE ON SMART BLOCKCHAIN (SMARTBLOCK), 2020, : 81 - 86
  • [32] Anomaly-PTG: A Time Series Data-Anomaly-Detection Transformer Framework in Multiple Scenarios
    Li, Gang
    Yang, Zeyu
    Wan, Honglin
    Li, Min
    ELECTRONICS, 2022, 11 (23)
  • [33] Real-Time Anomaly Detection in Time Series Using Transformer-Like Architecture
    Zhang, Meixian
    Shi, Xue
    Huang, Jiaxin
    2024 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING, AITEST, 2024, : 150 - 151
  • [34] TransSiamese: A Transformer-Based Siamese Network for Anomaly Detection in Time Series as Approach for Fault Location in Distribution Grids
    Fornas, Javier Granado
    Jaraba, Elias Herrero
    Estopinan, Andres Llombart
    IEEE ACCESS, 2023, 11 : 103431 - 103451
  • [35] TCF-Trans: Temporal Context Fusion Transformer for Anomaly Detection in Time Series
    Peng, Xinggan
    Li, Hanhui
    Lin, Yuxuan
    Chen, Yongming
    Fan, Peng
    Lin, Zhiping
    SENSORS, 2023, 23 (20)
  • [36] Point-Correlate Adversarial Transformer for Unsupervised Multivariate Time Series Anomaly Detection
    Li, Huan
    Kong, Xiangjie
    Shen, Guojiang
    Yang, Xiaoran
    Yang, Yao
    Collotta, Mario
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 297 - 302
  • [37] Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT
    Chen, Zekai
    Chen, Dingshuo
    Zhang, Xiao
    Yuan, Zixuan
    Cheng, Xiuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9179 - 9189
  • [38] Variable-wise generative adversarial transformer in multivariate time series anomaly detection
    Yang, Xuekang
    Li, Hui
    Feng, Xingyu
    Jin, Zixiong
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28745 - 28767
  • [39] Variable-wise generative adversarial transformer in multivariate time series anomaly detection
    Xuekang Yang
    Hui Li
    Xingyu Feng
    Zixiong Jin
    Applied Intelligence, 2023, 53 : 28745 - 28767
  • [40] Enhanced graph diffusion learning with dynamic transformer for anomaly detection in multivariate time series
    Gao, Rong
    Wang, Jiming
    Yu, Yonghong
    Wu, Jia
    Zhang, Li
    NEUROCOMPUTING, 2025, 619