Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region

被引:37
|
作者
Minunno, F. [1 ]
Peltoniemi, M. [2 ]
Launiainen, S. [2 ]
Aurela, M. [3 ]
Lindroth, A. [4 ]
Lohila, A. [3 ]
Mammarella, I. [5 ]
Minkkinen, K. [1 ]
Makela, A. [1 ]
机构
[1] Univ Helsinki, Dept Forest Sci, POB 27, FIN-00014 Helsinki, Finland
[2] Nat Resources Inst Finland Luke, Jokiniemenkuja 1, Vantaa 01301, Finland
[3] Finnish Meteorol Inst, FI-00560 Helsinki, Finland
[4] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[5] Univ Helsinki, Dept Phys, POB 48, FIN-00014 Helsinki, Finland
关键词
Forest modelling; PRELES; Eddy-fluxes; Boreal forest; Bayesian statistics; GROSS PRIMARY PRODUCTION; SCOTS PINE; CARBON BALANCE; BAYESIAN CALIBRATION; SENSITIVITY-ANALYSIS; USE EFFICIENCY; PEATLAND FOREST; NORWAY SPRUCE; CO2; EXCHANGE; PRODUCTIVITY;
D O I
10.1016/j.ecolmodel.2016.09.020
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Simple models are less input demanding and their calibration involves a lower number of parameters, however their general applicability to vast areas must be tested. We analysed if a simple ecosystem model (PRELES) can be applied to estimate carbon and water fluxes of Boreal forests at regional scale. Multi-site (M-S) and site-specific (S-S) calibrations were compared using evapotranspiration (ET) and gross primary production (GPP) measurements from 10 sites. The performances of M-S were similar to S-Ss except for a site with agricultural history. Although PRELES predicted GPP better than ET, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. We further found that, in the calibration, the use of a long and carefully collected flux dataset from one site that covers a wide range of climate variability leads to better model performance in other sites as well. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [41] A Semi-Empirical Model of Particle Velocity in Foam
    Martinsson, Johan
    Deng, Zhiyin
    Du Sichen
    ISIJ INTERNATIONAL, 2018, 58 (07) : 1368 - 1370
  • [42] Peat pyrolysis and the analytical semi-empirical model
    Feng, J.
    Green, A. E. S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2007, 29 (11) : 1049 - 1059
  • [43] A semi-empirical model for magnetic storm dynamics
    Benella, Simone
    Consolini, Giuseppe
    Stumpo, Mirko
    Alberti, Tommaso
    ANNALS OF GEOPHYSICS, 2023, 66 (3-4)
  • [44] SEMI-EMPIRICAL MODEL OF THE UPPER FLARE CHROMOSPHERE
    LITES, BW
    COOK, JW
    ASTROPHYSICAL JOURNAL, 1979, 228 (02): : 598 - 609
  • [45] Semi-empirical models for assessing biological productivity of Northern Eurasian forests
    Shvidenko, Anatoly
    Schepaschenko, Dmitry
    Nilsson, Sten
    Bouloui, Yuri
    ECOLOGICAL MODELLING, 2007, 204 (1-2) : 163 - 179
  • [46] Thermospheric basis functions for improved dynamic calibration of semi-empirical models
    Sutton, Eric K.
    Cable, Samuel B.
    Lin, Chin S.
    Qian, Liying
    Weimer, Daniel R.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2012, 10
  • [47] Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forests of eastern Canada
    Lecomte, Nicolas
    Simard, Martin
    Fenton, Nicole
    Bergeron, Yves
    ECOSYSTEMS, 2006, 9 (08) : 1215 - 1230
  • [48] Calibration of diffusion barrier charcoal detectors using a semi-empirical expression
    Cabrera, MEM
    Sujo, LC
    Villalba, L
    Peinado, JS
    Jiménez, AC
    Miranda, AL
    Peraza, EFH
    APPLIED RADIATION AND ISOTOPES, 2003, 59 (04) : 281 - 287
  • [49] Fire Severity and Long-term Ecosystem Biomass Dynamics in Coniferous Boreal Forests of Eastern Canada
    Nicolas Lecomte
    Martin Simard
    Nicole Fenton
    Yves Bergeron
    Ecosystems, 2006, 9 : 1215 - 1230
  • [50] Semi-empirical calibration of remote microphone probes using Bayesian inference
    Moriaux, Olivier
    Zamponi, Riccardo
    Schram, Christophe
    JOURNAL OF SOUND AND VIBRATION, 2024, 573