Multiple nontrivial solutions for semilinear elliptic Neumann problems with indefinite linear part

被引:0
|
作者
Filippakis, M. [1 ]
Papageorgiou, N. S. [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2008年 / 17卷 / 02期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a semilinear Neumann problem with indefinite linear part and a nonsmooth potential (hemivariational inequality). Using a nonsmooth variant of the reduction technique, we prove a multiplicity theorem for problems with subquadratic potential.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 50 条
  • [41] Compact embeddings and indefinite semilinear elliptic problems
    Schneider, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (02) : 283 - 303
  • [42] THREE NONTRIVIAL SOLUTIONS FOR NONCOERCIVE ASYMPTOTICALLY LINEAR ELLIPTIC PROBLEMS
    Hu, Shouchuan
    Papageorgiou, N. S.
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (02): : 559 - 576
  • [43] Multiple solutions for resonant semilinear elliptic problems in RN
    Garza, GL
    Rumbos, AJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (01) : 367 - 379
  • [44] Multiple solutions for inhomogeneous critical semilinear elliptic problems
    Wan, Youyan
    Yang, Jianfu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) : 2569 - 2593
  • [45] A note on multiple solutions of some semilinear elliptic problems
    Dancer, EN
    Du, YH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (02) : 626 - 640
  • [46] Multiple clustered layer solutions for semilinear Neumann problems on a ball
    Malchiodi, A
    Ni, WM
    Wei, JC
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02): : 143 - 163
  • [47] Multiple solutions with sign information for semilinear Neumann problems with convection
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Revista Matemática Complutense, 2020, 33 : 19 - 38
  • [48] ON SOLVING SEMILINEAR SINGULARLY PERTURBED NEUMANN PROBLEMS FOR MULTIPLE SOLUTIONS*
    Xie, Ziqing
    Yuan, Yongjun
    Zhou, Jianxin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01): : A501 - A523
  • [49] Multiple solutions with sign information for semilinear Neumann problems with convection
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 19 - 38
  • [50] Multiple solutions of Neumann elliptic problems with critical nonlinearity
    Musso, M
    Passaseo, D
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (02) : 301 - 320